发布时间:2021-09-03 11: 22: 34
当需要研究一组随机变量与另一组变量的关系时,通常会运用回归分析。通过回归分析构建数学模型,探究两种或两种以上变量之间是否存在关系,若存在关系还可进一步预测未来的数据。
当自变量有多个而因变量只有一个时,则可构建spss多元线性回归分析,此时计算量较大,因此通过IBM SPSS Statistics(win)能更为准确、便捷地进行分析。
一、使用的数据
本文将使用一组人均消费支出额、人均工资性收入和人均非工资性收入的数据为例,使用IBM SPSS Statistics进行多元线性回归分析,分析这一组数据构建的模型是否显著,是否能进行预测分析。
如图1,因变量为人均消费支出额,两组自变量分别为人均工资性收入、人均非工资性收入。构建多元线性回归分析,分析两组自变量是否与人均消费支出额存在关系。

二、应用线性回归分析
在IBM SPSS Statistics中按照分析-回归-线性的顺序展开回归分析对话框。

在展开的线性回归对话框中,将人均消费支出额添加入因变量一栏中,将人均工资性收入和人均非工资性收入添加入自变量方框中,点击确定,即可得到分析结果。

三、对数据进行分析
通过IBM SPSS Statistics的线性回归分析功能得出分析结果后,可对得出的数据进行具体分析。从图4的模型摘要可知回归模型拟合程度R2=0.992,

接近1,说明该模型拟合程度高。

如图5所示,可知F统计量的值为340.676,对应的显著性小于0.01小于0.05,说明模型整体显著。

图6的系数表是回归模型的输出结果,回归系数的T检验可以直接通过显著性的值与0.05进行比较,若显著性小于0.05,说明回归系数通过了T检验,回归系数不为0。从系数表可知人均工资性收入x1和人均非工资性收入x2的显著性均小于0.05,通过了T检验。
由此构建出的模型为:


本文通过IBM SPSS Statistics建立的回归模型可以通过以上所说的三种检验,说明可用于预测分析。也就是说当知道某年的人均工资性收入和人均非工资性收入后可预测当年的人均消费支出额。
作者:刘白
展开阅读全文
︾
微信公众号
读者也喜欢这些内容:
SPSS结果中显著性水平怎么看 SPSS输出查看器内容保存方式
作为一款专业的数据分析软件,SPSS软件凭借着自身专业的功能与过硬的数据分析本领,受到了众多用户的青睐。而在使用SPSS的过程中,显著性分析是大家经常会遇到的问题。显著性分析的主要作用是帮助我们分析两组或者多组变量之间的显著性关系,在得到数据显著性分析的结果后,会需要把数据内容进行保存和留用。接下来给大家介绍SPSS结果中显著性水平怎么看,SPSS输出查看器内容保存方式的具体内容。...
阅读全文 >
SPSS显著性小于0.001的意义 SPSS显著性大于0.05怎么办
在使用SPSS软件进行数据分析工作的过程中,得到的显著性水平分析结果具有极为重要的作用。它能够帮助我们衡量变量之间是否存在真实的关联,或者不同组别数据之间是否存在实质性的差异。今天我们就一起来探讨关于SPSS显著性小于0.001的意义,SPSS显著性大于0.05怎么办的问题。...
阅读全文 >
SPSS重复测量方差分析怎么操作 SPSS重复测量方差分析结果怎么看
重复测量方差分析在医学研究中应用非常广泛,常用于对同一变量进行重复测量,用来判断两两数据之间有无差异,接下来本文将结合样本案例为大家演示SPSS重复测量方差分析怎么操作,SPSS重复测量方差分析结果怎么看的相关内容。...
阅读全文 >
SPSS逐步回归分析怎么操作 SPSS逐步回归分析结果如何处理
作为线性回归的一种方式,如果我们使用逐步回归分析,就能够帮助构建一个更有效的预测模型,而且对模型的拟合优度有所提高。使用SPSS的过程中,如果掌握逐步回归分析的方法,就能够帮助我们解决很多实际工作中的问题。下面我就给大家介绍一下:SPSS逐步回归分析怎么操作,SPSS逐步回归分析结果如何处理的相关内容。...
阅读全文 >