IBM SPSS Statistics 中文网站 > 使用技巧 > spss怎么做逐步回归分析 逐步回归分析spss结果解读

spss怎么做逐步回归分析 逐步回归分析spss结果解读

发布时间:2022-05-12 14: 19: 41

品牌型号:联想GeekPro 2020

系统: Windows 10 64位专业版

软件版本: IBM SPSS Statistics

spss怎么做逐步回归分析?逐步回归分析是多元线性回归分析的一种,可通过spss回归分析中的“步进”法来做逐步回归分析。本文会运用例子演示逐步回归分析步骤,并进行逐步回归分析spss结果解读。

一、spss怎么做逐步回归分析

逐步回归分析,实际上是多元线性回归的一种分析方法,通过将变量逐个输入,并检验变量的显著性,来逐一剔除影响不显著的变量,从而建立最优的回归方程。接下来,我们通过一个例子具体演示下spss的操作方法。

示例数据如图1所示,X1、X2、X3、X4、X5、X6为自变量,X7为因变量,探究X1、X2、X3、X4、X5、X6与X7的线性回归关系。

图1:示例数据
图1:示例数据

 

如图2所示,依次点击spss的分析-回归-线性分析。

图2:线性回归分析
图2:线性回归分析

 

接着,设定变量

分别将X1、X2、X3、X4、X5、X6添加到自变量、X7添加到因变量中,以研究X1、X2、X3、X4、X5、X6对X7的影响。

然后,关键的一步,如图3所示,在方法下拉菜单中选择“步进”,进行逐步回归分析。

图3:步进(逐步回归)
图3:步进(逐步回归)

 

统计量设置如图4所示,包括回归系数的估算值,模型拟合以及DW值(德宾-沃森),以检验模型的拟合优度以及残差是否存在自相关。

图4:统计量
图4:统计量

 

图表设置上,如图5所示,选择“直方图”与“正态概率图”,以检验模型的残差是否服从正态分布。

图5:标准化残差图
图5:标准化残差图

 

对于逐步回归分析,需要注意的是步进法条件的设置,如图6所示,可选择使用F的概率或F值,数值一般保持默认即可。

图6:步进法条件
图6:步进法条件

 

二、逐步回归分析spss结果解读

接下来,进行spss逐步回归分析结果解读。

首先观察残差的正态P-P图,可看到数据集中在一条直线上,说明数据残差服从正态分布,满足逐步回归分析的假设。

图7:残差正态P-P图
图7:残差正态P-P图

 

从输入/除去变量表看到,本次逐步回归分析进行了6次输入或除去。

图8:输入与除去的变量
图8:输入与除去的变量

 

而针对6次输入或除去创建的模型,模型4、5、6的调整后R方达到0.92或以上,说明模型的拟合优度高。

图9:模型摘要
图9:模型摘要

 

ANOVA分析,6个逐步回归模型的显著性值为0.00,小于0.05的置信空间,即说明有95%的概率拒绝原假设,也就是说,各方程中的自变量与因变量间存在着显著的相关关系。

图10:ANOVA检验
图10:ANOVA检验

 

三、逐步回归分析方程怎么写

从上述的分析中,我们知道本例逐步回归分析得到的6个方程都具有显著性,而从模型拟合优度来看,方程4、5、6拟合优度更好。

接着,根据系数检验结果看到,方程4的X3系数不显著,因此倾向使用方程5和方程6,其逐步回归方程可根据未标准化系数的B值写成如下:

方程5:X7=1201.938+59.873X2+139.350X1+32.881X4

方程6:X7=1039.502+49.342X2+157.661X1+25.8731X4+23.906X5

图11:系数检验
图11:系数检验

 

四、小结

以上就是关于spss怎么做逐步回归分析,逐步回归分析spss结果解读的相关内容。spss逐步回归分析,实际上是使用“步进”法进行多元线性回归分析的方法,该方法可通过逐步输入剔除不相关的变量,寻找最优的回归方程。

 

作者:泽洋

展开阅读全文

标签:一元线性回归分析SPSS教程回归分析二元回归分析有序回归分析

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
spss怎么做逐步回归分析 逐步回归分析spss结果解读
spss怎么做逐步回归分析?逐步回归分析是多元线性回归分析的一种,可通过spss回归分析中的“步进”法来做逐步回归分析。本文会运用例子演示逐步回归分析步骤,并进行逐步回归分析spss结果解读。
2022-05-12
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
最新文章
spss合并文件的操作步骤 spss合并文件变量怎么配对
可以使用两种方式合并两个数据文件中的数据,一是包含相同个案但不同变量的数据集,另一个是包含相同变量但不同个案的数据集,本文主要向大家介绍如何合并包含相同个案但不同变量的数据集。关于SPSS合并文件的操作步骤是什么,SPSS合并文件变量怎么配对,结合实例,向大家作简单介绍。
2023-11-06
spss计算变量如何计算平方 spss计算变量如何全选
以变量为单位管理并处理数据,是使用SPSS进行建模统计分析的基础。对于有经验的数据分析工作者,这部分工作要占整个统计分析工作的70%以上。管理变量大致包括两部分内容,变量赋值(或称为变量计算)和变量转化。本文主要向大家介绍变量计算的内容,例如SPSS计算变量如何计算平方,SPSS计算变量如何全选。
2023-11-04
spss卡方检验结果线性关联是什么 spss卡方检验结果没有连续性校正
对于两组连续性变量,一般通过回归分析判断两者是否存在相关关系。对于离散型变量,则需借助卡方检验判断两者之间是否存在相关关系。变量数据类型不同,SPSS卡方检验提供的结果形式也有所不同,因此很多用户会感到不解。本文结合实例向大家介绍SPSS卡方检验结果线性关联是什么,SPSS卡方检验结果没有连续性校正原因是什么。
2023-11-02
spss回归分析如何操作 spss回归分析的基本步骤
通过回归分析,可以了解变量间是否存在相互依赖的定量关系。根据方程类型,回归分析可以分为线性回归和非线性回归。根据变量的数目多少,回归分析可以分为一元回归分析和多元回归分析。本文以最简单的一元线性回归分析为例向大家介绍SPSS回归分析如何操作,SPSS回归分析的基本步骤。
2023-10-31
spss方差齐性检验如何操作 spss方差齐性检验怎么看方差齐不齐
方差的大小代表了数据分布的离散程度,方差大,数据分布越分散,方差小,数据分布越集中。组间数据分布离散程度差别较大时,是不能进行比较的,此时不能确定两组数据的差异来源于组间还是组内,因此方差齐性检验是进行组间数据比较的基础。关于SPSS方差齐性检验如何操作,SPSS方差齐性检验怎么看方差齐不齐,本文借助实例,向大家作简单介绍。
2023-10-25
spss线性回归图怎么做 spss线性回归图怎么看结果
借助回归分析,我们可以了解到两组变量是否存在具有统计学意义的依赖关系,描述这种依赖关系的方程是什么,方程可以在多大程度上解释因变量的变化。使用SPSS,不仅可以简便的完成回归分析,还可以为变量绘制散点图,便于大家直观的了解变量间关系。关于SPSS线性回归图怎么做,SPSS线性回归图怎么看结果,本文借助实例,向大家做简单的介绍。
2023-10-25

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: