IBM SPSS Statistics 中文网站 > 使用技巧 > spss怎么做逐步回归分析 逐步回归分析spss结果解读

spss怎么做逐步回归分析 逐步回归分析spss结果解读

发布时间:2022/05/12 14:19:41

品牌型号:联想GeekPro 2020

系统: Windows 10 64位专业版

软件版本: IBM SPSS Statistics

spss怎么做逐步回归分析?逐步回归分析是多元线性回归分析的一种,可通过spss回归分析中的“步进”法来做逐步回归分析。本文会运用例子演示逐步回归分析步骤,并进行逐步回归分析spss结果解读。

一、spss怎么做逐步回归分析

逐步回归分析,实际上是多元线性回归的一种分析方法,通过将变量逐个输入,并检验变量的显著性,来逐一剔除影响不显著的变量,从而建立最优的回归方程。接下来,我们通过一个例子具体演示下spss的操作方法。

示例数据如图1所示,X1、X2、X3、X4、X5、X6为自变量,X7为因变量,探究X1、X2、X3、X4、X5、X6与X7的线性回归关系。

图1:示例数据
图1:示例数据

 

如图2所示,依次点击spss的分析-回归-线性分析。

图2:线性回归分析
图2:线性回归分析

 

接着,设定变量

分别将X1、X2、X3、X4、X5、X6添加到自变量、X7添加到因变量中,以研究X1、X2、X3、X4、X5、X6对X7的影响。

然后,关键的一步,如图3所示,在方法下拉菜单中选择“步进”,进行逐步回归分析。

图3:步进(逐步回归)
图3:步进(逐步回归)

 

统计量设置如图4所示,包括回归系数的估算值,模型拟合以及DW值(德宾-沃森),以检验模型的拟合优度以及残差是否存在自相关。

图4:统计量
图4:统计量

 

图表设置上,如图5所示,选择“直方图”与“正态概率图”,以检验模型的残差是否服从正态分布。

图5:标准化残差图
图5:标准化残差图

 

对于逐步回归分析,需要注意的是步进法条件的设置,如图6所示,可选择使用F的概率或F值,数值一般保持默认即可。

图6:步进法条件
图6:步进法条件

 

二、逐步回归分析spss结果解读

接下来,进行spss逐步回归分析结果解读。

首先观察残差的正态P-P图,可看到数据集中在一条直线上,说明数据残差服从正态分布,满足逐步回归分析的假设。

图7:残差正态P-P图
图7:残差正态P-P图

 

从输入/除去变量表看到,本次逐步回归分析进行了6次输入或除去。

图8:输入与除去的变量
图8:输入与除去的变量

 

而针对6次输入或除去创建的模型,模型4、5、6的调整后R方达到0.92或以上,说明模型的拟合优度高。

图9:模型摘要
图9:模型摘要

 

ANOVA分析,6个逐步回归模型的显著性值为0.00,小于0.05的置信空间,即说明有95%的概率拒绝原假设,也就是说,各方程中的自变量与因变量间存在着显著的相关关系。

图10:ANOVA检验
图10:ANOVA检验

 

三、逐步回归分析方程怎么写

从上述的分析中,我们知道本例逐步回归分析得到的6个方程都具有显著性,而从模型拟合优度来看,方程4、5、6拟合优度更好。

接着,根据系数检验结果看到,方程4的X3系数不显著,因此倾向使用方程5和方程6,其逐步回归方程可根据未标准化系数的B值写成如下:

方程5:X7=1201.938+59.873X2+139.350X1+32.881X4

方程6:X7=1039.502+49.342X2+157.661X1+25.8731X4+23.906X5

图11:系数检验
图11:系数检验

 

四、小结

以上就是关于spss怎么做逐步回归分析,逐步回归分析spss结果解读的相关内容。spss逐步回归分析,实际上是使用“步进”法进行多元线性回归分析的方法,该方法可通过逐步输入剔除不相关的变量,寻找最优的回归方程。

 

作者:泽洋

标签:一元线性回归分析SPSS教程回归分析二元回归分析有序回归分析

读者也访问过这里:
SPSS Statistics
一款功能强大的数据统计分析工具
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS进行变量赋值的相关操作
变量和个案是IBM SPSS数据界面很重要的两个部分,可以形象理解为地球仪上的经线和纬线。通俗一点讲数据界面的每一列是一种变量,如年龄性别等。一行中的所有变量又构成了一个个案,本篇文章着重讲解变量,个案就不做过多展开。在图1中有具体的标注,可以看一下变量和个案到底是什么样。
2021-02-23
如何通过SPSS对问卷进行效度分析
效度分析是指测量的根据或手段(在问卷中为问卷题目)是否能有效检测所需测量事物的程度,是问卷分析中几乎必须进行的一个环节,效度分析分为内容效度、准则效度和结构效度,问卷分析一般所使用的效度分析一般是结构效度。通过数据分析软件IBM SPSS Statistics(win)的效度分析功能我们可轻松获得关于问卷的效度分析结果,帮助我们更好设计或评估问卷。那么如何通过IBM SPSS Statistics对问卷进行效度分析。
2021-10-26