SPSS > 使用技巧 > SPSS主成分分析特征向量在哪 SPSS主成分分析法的结果怎么解读

SPSS主成分分析特征向量在哪 SPSS主成分分析法的结果怎么解读

发布时间:2022-06-06 10: 49: 56

品牌型号:Dell N5010

系统:Windows 10

软件版本:IBM SPSS Statistics试用版

主成分分析(Principal Component Analysis,PCA)以降维方式,在尽量损失较少信息的前提下,通过正交变换,将一组可能存在相关性的多个变量转换为一组线性不相关的少数变量,转换生成的综合指标称之为主成分。主成分载荷矩阵,或者称为主成分特征向量,可以由因子载荷矩阵计算得出。借助IBM SPSS Statistics,我们可以非常方便完成主成分分析,SPSS主成分分析特征向量在哪?SPSS主成分分析法的结果怎么解读,本文将向大家做简单介绍。

一、SPSS主成分分析特征向量在哪

主成分分析特征向量不能直接给出,需要进行计算,我们以一组数据为例,进行主成分分析,分析结果及分析过程我们会分别在第二第三小节中进行介绍。

我们首先计算主成分分析特征向量。复制成分矩阵数据到数据表中,并将三个向量命名为A1,A2,A3。

 

图1复制成分矩阵到数据表中
图1复制成分矩阵到数据表中

 

 

主成分特征向量计算公式为U=A/sqrt(λ),我们已知A,λ在分析结果的总方差解释表中,A1,A2,A3对应的特征值分别为2.861,2.285,1.475,我们点击转换,计算变量,输入目标变量U的名称,将A1加入数字表达式,然后按公式录入λ平方根,点击确定,SPSS将自动进行向量计算。同样方法计算U2,U3。

 

图2 计算特征向量U
图2 计算特征向量U

 

 

计算完毕后,我们在数据表中得出特征向量组U1,U2,U3。

 

图3 特征向量组U1,U2,U3
图3 特征向量组U1,U2,U3

 

 

U1,U2,U3组成的矩阵就是该问题主成分分析的特征矩阵,该特征矩阵左乘目标数据集,即可得到一组主成分变量。

二、SPSS主成分分析法的结果怎么解读

首先我们观察总方差解释,提取的三个主成分累计为82.761,说明此三个变量就能较好的解释结果,可以用此三个变量代替总共的八个变量。

 

图4 总方差解释
图4 总方差解释

 

 

然后我们查看碎石图,在第四个组件时曲线递减速率发生变化,佐证了上述的结论,三个变量就可以解释结果。

 

图5 碎石图
图5 碎石图

 

 

 

我们在成分矩阵可以看出,e,f在第一组向量中影响较高,c在第二组向量中影响较高,d和h在第三组向量中影响较大。

 

图6 成分矩阵
图6 成分矩阵

 

 

综合以上分析,第一小节中得出的主成分矩阵以及主成分变量可以很好的解释当前问题,原有的8个变量可以减少至3个。

三、SPSS主成分分析步骤

录入数据后,点击分析,降维,因子,进入主成分分析界面。

 

图7 降维进行因子分析
图7 降维进行因子分析

 

 

将数据加入变量列表,点击描述,勾选初始解,系数,KMO检验选项。然后点击继续。

 

图8 因子分析描述设置
图8 因子分析描述设置

 

 

点击提取,勾选相关性矩阵,未旋转因子解,碎石图,点击继续。点击确定,SPSS将对数据进行主成分分析。

由于主成分特征向量需要进行计算,SPSS并不会直接显示,所以很多用户会有SPSS主成分分析特征向量在哪这样的疑问,本文向大家介绍了主成分特征矩阵的计算方法,大家可以参考,SPSS主成分分析法结果怎么解读?我们只要找到平方和载荷累计高于80%的几组主成分,构建主成分向量特征矩阵即可。

 

作者:莱阳黎曼

展开阅读全文

标签:SPSSIBM SPSS StatisticsSPSS教程主成分分析SPSS主成分分析SPSS主成分分析法SPSS主成分分析步骤

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS酒水行业应用案例
在酒水行业的生产、研发与决策过程中,数据分析是提升效率、优化质量的核心支撑。某知名酒企此前依赖基础工具与外部服务处理数据,面临分析精度低、成本高、流程不规范等问题。通过部署 SPSS 专业数据分析软件,结合控制图、线性回归、主成分分析等多类统计方法,该企业实现了生产过程的精准监控、质量因素的深度挖掘及决策的科学化,显著提升了自主分析能力与业务效益。本文将基于该酒企的实践案例,详细阐述 SPSS 在酒水行业的具体应用。
2025-08-29
SPSS临床应用案例
在医疗科研领域,临床数据的统计分析是验证研究假设、得出科学结论的关键环节。某大型三甲医院作为大学医学院附属医院,其肿瘤科医生兼具临床诊疗与科研教学双重职责,在开展多项临床研究项目时积累了大量数据,亟需高效准确的统计分析工具。SPSS Statistics 凭借操作简便、功能全面的优势,成为该医院处理临床科研数据的首选工具。本文将以该医院肿瘤科的临床研究数据为例,详细阐述 SPSS 在统计描述、统计推断及统计建模中的具体应用,为医疗科研工作者提供参考。
2025-08-29
SPSS假设检验P值怎么算 SPSS假设检验结果怎么看
很多时候人们无法分辨两组数据间的差异是来自于抽样不均匀,还是来自数据总体的差异,这时候可以通过假设检验的方法予以判别。假设检验先假定一个结论,然后使用统计学方法推测是否接受该结论,判别两组数据之间是否存在差异。人工进行假设检验,需要进行大量计算,还需要查表,非常繁琐。借助统计学软件,如SPSS,可以高效的进行假设检验。SPSS假设检验P值怎么算,SPSS假设检验结果怎么看,本文借助实例,向大家作简单介绍。
2025-08-27
SPSS变量名称怎么改,SPSS变量名称非法字符怎么办
变量是我们进行数据分析的主体,变量的类型和名称有很多,我们需要为不同的变量设定不同的名称,才能使SPSS有效地识别并判断出它们之间的数据属性。今天我就以SPSS变量名称怎么改,SPSS变量名称非法字符怎么办这两个问题为例,来向大家讲解一下SPSS中有关变量名称设定的相关知识。
2025-08-27
SPSS数字和字符串的区别 SPSS数字和数值一样吗
常规意义上我们理解的数据,可能只是各式各样的数字,但实际情况下,数值、文字、比值、区间等等,都囊括在数据分析工作的范围之内。今天我就以SPSS数字和字符串的区别,SPSS数据和数值一样吗这两个问题为例,来向大家讲解一下SPSS中不同变量类型之间的差别。
2025-08-27
SPSS数据透视表好用吗 SPSS数据透视表变量两个值怎么做
从名称上我们就能看出,数据透视表是一种表格形式的数据分析工具。设定完整的数据透视表,不仅能够分析已有数据,还支持数据的动态更新和汇总运算,功能十分强大。今天我就以SPSS数据透视表好用吗,SPSS数据透视表变量两个值怎么做这两个问题为例,来向大家讲解一下SPSS中关于数据透视表的相关知识。
2025-08-27

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: