IBM Business Partner

IBM SPSS Statistics 中文网站 > 使用技巧 > 如何用IBM SPSS Statistics分析两个变量之间的关联度

如何用IBM SPSS Statistics分析两个变量之间的关联度

发布时间:2021/09/08

现实中我们常常会遇到对两个分类变量之间是否存在关联进行讨论,如睡眠时间与学习成绩之间是否存在关联、宣传费用与销售量是否存在关联?

对于这种问题,我们是不能通过表面数据进行确定的。但我们可以通过IBM SPSS Statistics(win)中的交叉表功能来确定两个变量之间的关联是否存在。

一、录入数据

消费者的年龄与消费者的购买意愿是否存在关联?相信这是一个多数人都会感兴趣的问题。本文将以一组年龄与购买意愿的数据为例,展示运用IBM SPSS Statistics进行关联性分析的过程与步骤。

图1:示例数据
图1:示例数据

二、对数据进行加权

此时录入进IBM SPSS Statistics的数据是汇总的数据,还不具备使用交叉表分析的条件。在进行交叉表分析之前还需要运用个案加权的功能,对购买数量进行加权。

按照数据-个案加权的步骤进入个案加权对话框。

图2:个案加权
图2:个案加权

选择个案加权依据,将购买数量放入频率变量栏中,点击确定,即可为购买数量进行加权。

图3:为购买数量加权
图3:为购买数量加权

三、交叉表分析

加权完成后,便可进行交叉表分析,在IBM SPSS Statistics中按照分析-描述统计-交叉表的顺序打开交叉表对话框。

图4:打开交叉表的步骤
图4:打开交叉表的步骤

在交叉表对话框中,购买意愿、年龄层次与购买数量初始是在左边的待选框中,需要将购买意愿列入行变量框,将年龄层次列入列变量框,购买数量则不需要变动。

图5:列入变量框
图5:列入变量框

此时为了便于最终结果的检验,需要运用到卡方检测,因此可点击右侧的统计,在展开的交叉表:统计中选择卡方。

图6:选择卡方
图6:选择卡方

点击继续,回到交叉表后再点击确定,即可得到交叉表的分析结果。

图7:检验结果
图7:检验结果

根据卡方检验的结果可知,渐进显著性P为0.369。根据假设检验的规定,若P值大于显著性水平α(显著性水平是估计总体参数落在某一区间内,可能犯错误的概率),则两个变量不存在关联性;反之则存在关联性。假设显著性水平α=0.05,则P=0.369>α=0.05,所以可认为购买意愿与消费者的年龄无关。

现实中存在着很多变量都具有似是而非的关联性,我们可以通过IBM SPSS Statistics的交叉表对这些变量进行分析,挖掘出真正的关联,排除错误的关联,这是非常有意义的。如对教育者而言可通过这个方法找到影响学生学习的真正因素,对生产者而言可以找到影响销量的因素。欢迎访问SPSS中文网站查看学习更多SPSS教程

作者:刘白

标签:spss变量

读者也访问过这里:
SPSS Statistics
一款功能强大的数据统计分析工具
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
如何用SPSS计算个人BMI值?
BMI即体重指数,是衡量个人身体质量的一个重要参数,通过判断BMI的数值大小,我们可以判断个人身高与体重是否协调。下面我将用IBM SPSS Statistics来为大家介绍BMI的计算方法。
2021-03-19
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
SPSS进行变量赋值的相关操作
变量和个案是IBM SPSS数据界面很重要的两个部分,可以形象理解为地球仪上的经线和纬线。通俗一点讲数据界面的每一列是一种变量,如年龄性别等。一行中的所有变量又构成了一个个案,本篇文章着重讲解变量,个案就不做过多展开。在图1中有具体的标注,可以看一下变量和个案到底是什么样。
2021-02-23
使用SPSS进行回归分析的方法总结
IBM SPSS Statistics 是强大的统计软件平台,SPSS全称Statistical Product and Service Solutions(统计产品与服务解决方案), SPSS可以帮助我们分析并更好地了解数据,以解决复杂的业务和研究问题。如今,SPSS已经被广泛运用于数据分析等各个领域。
2021-03-09
如何使用SPSS检验数据是否服从正态分布—偏度峰度系数
在《如何使用SPSS检验数据是否服从正态分布—KS检验与Q-Q图》一文中,我们了解了如何使用KS检验、Q-Q图来验证数据的正态性。接下来,本文将会继续讲解如何使用IBM SPSS Statistics的描述统计(偏度峰度系数)、探索统计检验(正态检验)数据的正态性。
2021-01-07