SPSS > 使用技巧 > spss检验有几种类型 spss检验一个变量是否受另一个影响

spss检验有几种类型 spss检验一个变量是否受另一个影响

发布时间:2023-12-09 10: 00: 00

品牌型号:Dell N5010

系统:Windows 10

软件版本:IBM SPSS Statistics

统计分析工作中,假设检验问题是非常重要的一类问题,即在不知道总体分布的前提下,为了推断总体的某些特征,提出的对总体的假设。那么SPSS检验有几种类型,SPSS检验一个变量是否受另一个影响如何操作?本文结合实例向大家作简单介绍。

一、spss检验有几种类型

SPSS中常用的假设检验有正态性检验,t检验,卡方检验等。

正态性检验用以分析数据是否服从正态分布,最常用的是夏皮洛-威尔克检验法。该检验的零假设为数据来源于服从正态分布的总体,如果根据统计量计算的P值小于显著性水平α(一般为0.05),则拒绝零假设,认为数据不服从正态分布,如果P值大于α,则接受零假设,认为数据服从正态分布。

图1是对某数据的检验结果,P大于0.05,认为数据服从正态分布。

正态性检验结果
图1 正态性检验结果

t检验用来分析两组数据是否来自同一个总体。t检验由Gosset提出,Gosset指出对于服从正态分布的总体,在测量数据不够多时,必须以一个新的统计量代t替总体的平均值μ,这样才能保持置信水平不变。因此对于少量的数据,分析是否来源于同一总体时,应使用t检验。

t检验零假设为数据来源于同一总体,如果计算的P小于α(0.05),则拒绝该假设,如果P大于α,则接受零假设,认为数据来源于同一总体。

在图2所示的t检验结果中,Sig.(双尾)即为P,P>0.05,认为两组数据来源于同一个总体。

t检验结果
图2 t检验结果

卡方检验是由皮尔逊提出的一种统计检验方法,在一定的置信水平下,通过比较期望概率和实际概率的符合程度,来了解两组定类变量的相关性。卡方检验的零假设是两组变量不相关,如果P大于α,则接受零假设,如果P小于α,则拒绝零假设,认为两组变量相关。

以上是几组常用的检验方法。在下一小节中我们以卡方检验为例,向大家介绍如何分析两组变量间是否存在相关性。

二、spss检验一个变量是否受另一个影响

分析一个变量是否受另一个变量的影响,可以对数据进行卡方检验。为了便于理解,这里列举一个实例。为调查性别是否与某种疾病发病率相关,进行了调查统计,数据如图3所示,其中1代表男性,2代表女性,1代表发病,2代表不发病。

待分析数据
图3 待分析数据

首先对数据进行加权,依次点击【数据】,【个案加权】,如图4所示。

进行个案加权
图4 进行个案加权

在弹出的界面中,勾选“个案加权系数”,将人数指定为频率变量,点击【确定】,即完成对数据的加权。

指定人数为频率变量
图5 指定人数为频率变量

在图6所示界面中,依次点击【分析】,【描述统计】,【交叉表】,进入交叉表分析界面。

进入交叉表分析界面
图6 进入交叉表分析界面

在交叉表分析界面中,将性别指定为行,将是否发病指定为列,点击【统计】按键,在弹出的窗口中,勾选“卡方”,点击【继续】,点击【确定】。

进行卡方分析
图7 进行卡方分析

卡方检验结果如图8所示,皮尔逊卡方检验渐进显著性为0,小于0.05,因此拒绝零假设,认为两组变量相关,即性别会对发病率产生影响。

卡方检验结果
图8 卡方检验结果

本文向大家介绍了SPSS检验有几种类型,SPSS检验一个变量是否受另一个影响的内容,SPSS提供的假设检验方法绝不仅限于此,更多的检验方法,大家可以登录IBM SPSS Statistics中文网站学习。

展开阅读全文

标签:变量类型SPSS软件SPSS数据分析软件SPSS数据类型SPSS检验SPSSt检验SPSSt检验步骤SPSSt检验教程SPSS正态性检验SPSS变量类型t检验SPSS

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS非参数秩和检验的适用范围 SPSS非参数秩和检验怎么操作
如果想要对非正态分布数据进行关系分析,推荐使用SPSS非参数检验方法展开操作,这样不仅可以判断不满足正态分布的变量之间是否存在关系,还能够清楚了解数据的秩次信息。今天,我们以SPSS非参数秩和检验的适用范围,SPSS非参数秩和检验怎么操作这两个问题为例,带大家了解一下SPSS非参数检验的知识。
2025-06-13
SPSS非参数检验不显示组别怎么办 SPSS非参数检验结果怎么解读
在数据分析领域,研究者通常要对非正态分布的数据进行非参数检验,这样不仅可以判断不满足正态分布的变量之间是否存在关系,还能够清楚了解数据的秩次信息。今天,我们以SPSS非参数检验不显示组别怎么办,SPSS非参数检验结果怎么解读这两个问题为例,带大家了解一下SPSS非参数检验的相关知识。
2025-06-12
SPSS标准化残差散点图怎么画 SPSS标准化残差大于3怎么办
在针对因变量为数值型变量展开建模分析的时候,研究者可以使用SPSS线性回归的残差分析检验变量的正态性特征,例如以残差等方差性判断回归残差的方差齐性,进而有助于优化和改进线性数据建模。今天,我们SPSS标准化残差散点图怎么画,SPSS标准化残差大于3怎么办这两个问题为例,带大家了解一下SPSS标准化残差散点图的相关知识。
2025-06-12
SPSS标准化残差图怎么做 SPSS标准化残差图解读
在数据分析领域,如果研究者想对线性数据集的正态性进行分析,推荐使用SPSS残差图绘制的方法来高效掌握采集的数据信息,以便了解数据模型的拟合情况和误差分布。今天,我们以SPSS标准化残差图怎么做,SPSS标准化残差图解读这两个问题为例,带大家了解一下SPSS标准化残差的相关知识。
2025-06-11
SPSS中如何将文字表达改为数字 SPSS怎么把字符串改成数字格式
在数据分析领域,如果想要对多属性或多选项的变量进行分析,研究者需要对一些文字变量进行赋值来将字符串改为数字格式,便于后续的问卷数据统计和测量。今天,我们以SPSS中如何将文字表达改为数字,SPSS怎么把字符串改成数字格式这两个问题为例,带大家了解一下SPSS字符赋值的相关知识。
2025-06-10
SPSS数据透视表如何创建 SPSS数据透视表字段调整步骤
在数据分析领域,SPSS的功能设置不仅适用于分析繁杂数据组之间的相关关系,还能够计算各类数值并且制作出清晰明确的图表,例如数据透视表、交互作用图等。今天,我们以SPSS数据透视表如何创建,SPSS数据透视表字段调整步骤这两个问题为例,带大家了解一下SPSS透视表设置的相关知识。
2025-06-10

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: