SPSS > 使用技巧 > SPSS线性判别和非线性判别 SPSS线性判别和非线性判别区别

SPSS线性判别和非线性判别 SPSS线性判别和非线性判别区别

发布时间:2022-06-29 13: 42: 12

品牌型号:Dell N5010

系统:Windows 10

软件版本:IBM SPSS Statistics试用版

判别分析是根据对象属性进行对象分类的一种方法,过程是根据已知对象属性训练出能够判定对象分类的函数,后续输入对象属性后,函数自动对该对象进行判别分类。判别分析通常借助专业的统计分析软件进行,如IBM SPSS Statistics,SPSS线性判别和非线性判别步骤是什么,SPSS线性判别和非线性判别区别是什么,本文简单向大家说明。

一、SPSS线性判别和非线性判别

在SPSS中,我们一般使用的是线性判别,此方法由Fisher提出,开始时是根据iris花的几个形态特点,对150组iris花进行分类。这150组iris花形态数据是非常经典的数据,无论使用软件进行线性判别,或者进行机器学习,都会引用这组数据进行验证。

这里我们仍然以这一组经典数据为例,向大家介绍SPSS线性判别的步骤,首先录入数据如图1所示。其中Species为iris花的种类,已知有三个种类, Sepal.Length, Sepal.Width,Petal.Length,Petal.Width分别为花的形态特点,对应的是测量的统计数据,我们目的在于根据已有的数据,建立合适的判别函数,当我们再遇到一种新的iris花时,我们仅仅需要录入花的形态特点,就能实现自动判别该iris花属于哪个种类。

iris花形态分类数据
iris花形态分类数据

 

我们依次点击分析,分类,判别式,如图2所示。

判别式分类
判别式分类

 

然后将花形态变量录入自变量,将分组号录入分组变量,然后点击定义范围,由于最多有三个组,所以最小值为1,最大值为3。

定义分组范围
定义分组范围

 

点击统计,勾选博克斯,未标准化选项,点击继续。

统计选项设置
统计选项设置

 

点击分类,勾选摘要表和合并组选项,点击继续,然后点击确定,SPSS将进行线性判别分析,我们将在第三小节中介绍如何解读判别结果。

分类选项设置
分类选项设置

 

二、SPSS线性判别和非线性判别区别

对于复杂的分类问题,我们可能会用到非线性判别函数,如下图中,A1,A2,A3为三个集,分布位置比较特别,此时使用线性判别函数无法精确地完成分类工作,直线总会与三个集有交点,借助于分段判别函数和二次判别函数,则可以解决判别问题,这就是线性判别和非线性判别的区别。

判别函数区别
判别函数区别

 

实际情况下,上述问题非常少见,我们一般借助线性判别就可以解决问题。SPSS中的函数系数也为Fisher线性判别函数。

判别函数系数
判别函数系数

 

三、SPSS线性判别结果解读

首先我们查看分组图,可见第一类setosa和第二类versic,第三类virgin分类较好,第二类和第三类略有重叠。

分组图
分组图

 

有了直观认识以后,我们查看分类结果,显示对98%的数据进行了较好的分类,2类和3类略有重叠,结果可以接受。

分组结果统计
分组结果统计

 

然后我们查看威尔克Lambda表,判别函数1和判别函数2显著性均小于0.05,有统计学意义。

威尔克Lambda表
威尔克Lambda表

 

综合来看,判别函数有统计学意义,分组结果准确性可以接受,Fisher线性判别方法可以很好地解决iris花分类问题。

以上就是SPSS线性判别和非线性判别,SPSS线性判别和非线性判别区别的相关内容了SPSS线性判别和非线性判别哪个为首选方法,一般首选线性判别,可解决大多数问题,SPSS线性判别和非线性判别在于对于某些集合,使用线性判别可能互有重叠,可借助非线性判别中分段线性和二次判别函数进行。

 

作者:莱阳黎曼

展开阅读全文

标签:IBM SPSS StatisticsSPSS教程非线性回归IBM SPSS

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS生存曲线数据怎么录入 SPSS怎么做生存曲线
在数据分析的领域中,生存分析一直是一个重要的概念,它在生物医学领域有着广泛的应用。而在SPSS中录入生存曲线数据,是我们进行生存分析的第一步,也是关键的一步,生存曲线的数据与后续的数据分析有着重要的关联。SPSS软件在其中可以帮助我们快速进行数据分析和曲线绘制,接下来给大家介绍SPSS生存曲线数据怎么录入,SPSS怎么做生存曲线的具体内容。
2025-11-25
SPSS如何处理缺失值 SPSS数据清理与替换方法
每当我们需要处理一组数据的缺失值时,就需要用到专业的数据分析软件。在数据分析软件的这个领域中,SPSS既能够帮助我们处理数据样本的缺失值,还可以针对数据的缺失值对样本进行整体替换与填补。接下来给大家介绍SPSS如何处理缺失值,SPSS数据清理与替换方法的具体内容。
2025-11-25
SPSS多层线性模型如何构建 SPSS多层线性模型层级变量设置
每当在进行数据分析时,许多小伙伴可能都会遇到构建多层线性模型的情况。构建多层线性模型能扩大已测量的数据样本,使数据涵盖更多内容,进而更加有说服力。而在进行多层线性模型构建时,一款好用的数据分析软件是不可缺少的,这里给大家介绍我自己常用的SPSS数据分析软件,同时以它为例向大家介绍SPSS多层线性模型如何构建,SPSS多层线性模型层级变量设置的具体内容。
2025-11-25
SPSS怎样进行聚类分析 SPSS聚类中心不稳定怎么解决
对于经常需要与数据分析打交道的小伙伴来说,想必对聚类分析这一分析操作肯定是不陌生的。聚类分析指的是收集相似的数据样本,并在相似数据样本的基础之上收集信息来进行分类,下面以SPSS为例,向大家介绍SPSS怎样进行聚类分析,SPSS聚类中心不稳定怎么解决的具体内容。
2025-11-25
SPSS怎么绘制柱状图 SPSS图表编辑器使用技巧
由于数据分析领域经常需要庞大的数据样本,所以将数据图像化便是其中的一项重要任务。因此绘制数据分析图便成为了其中的关键操作。SPSS作为一款专业的数据分析软件,不仅可以用它来处理日常的各种数据分析内容,还能够完成数据图像的绘制和图表的编译。接下来给大家介绍SPSS怎么绘制柱状图,SPSS图表编辑器使用技巧的具体内容。
2025-11-25
SPSS如何做因子分析 SPSS因子载荷解释不清晰怎么办
每当我们在进行数据分析的工作时,因子分析是绕不开的一个话题。它在一组数据的分析中占据了重要的位置,主要用来检验不同变量之间是否存在共性的因子,而这些因子会影响数据的变量,例如从学生的考试成绩中判断是否存在共有的数据因子,这部分共有的数据因子对学生的成绩好坏会产生影响。下面我们以一款专业的数据分析软件SPSS为例,向大家介绍SPSS如何做因子分析,SPSS因子载荷解释不清晰怎么办的具体内容。
2025-11-25

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: