SPSS > 使用技巧 > SPSS分层卡方检验步骤 SPSS分层卡方检验结果解读

SPSS分层卡方检验步骤 SPSS分层卡方检验结果解读

发布时间:2025-04-25 08: 00: 00

品牌型号:惠普 Laptop 15

软件版本:IBM SPSS Statistics27

系统:Windows 10

分层卡方检验是SPSS中常用的统计分析方法之一,常用来识别分类变量中的混杂因素并控制其影响。通过将数据按混杂因素分层后,分别在每一层内分析分类变量之间的关联性,从而排除混杂变量的干扰。接下来本文将来带大家了解SPSS分层卡方检验步骤,SPSS分层卡方检验结果解读的相关内容。

一、SPSS分层卡方检验步骤

我们想要研究吸烟与某种疾病的的关联,共纳入了400多名研究对象,并记录了他们的年龄段、吸烟情况、肺癌状态等信息,为探究吸烟与肺癌的关系,以及评估年龄段这一潜在混杂因素的影响,下面我们使用SPSS完成分层卡方检验。

示例样本
图1:示例样本

1、首先在SPSS中,对数据进行加权处理,工具栏选择【数据】,点击下拉菜单找到【个案加权】选项,在下图所示的面板中,勾选个案加权依据,将【人数】添加到【频率变量】框中,点击【确定】。

个案加权
图2:个案加权

2、依次点击【分析】菜单,选择【描述统计】按钮,然后找到【交叉表】,在交叉表面板中,把吸烟情况添加右边的【行】中,再把肺癌状态添加到右边的【列】中,最后把年龄组添加到下面的【层】中;

交叉表
图3:交叉表

3、点击【统计】按钮设置相关参数,勾选卡方、风险和柯克兰和曼特尔-亨塞尔统计,这是进行分层卡方检验的一项重要操作步骤。

统计
图4:统计

4、打开【单元格】对话框,勾选【计数】区域的实测、期望,【百分比】区域的行等信息,全面了解吸烟与肺癌关联在各年龄段的人数和表现,点击【继续】按钮,SPSS会运行分析。

单元格显示
图5:单元格显示

二、SPSS分层卡方检验结果解读

SPSS会在输出窗口中生成一系列结果表,其中包含了交叉表、卡方检验表、曼特尔-亨塞尔一般比值比估算表等,我们来对这些结果进行解读分析。

1、首先交叉表按老年、青年、中年三个年龄组分别展示,每个年龄组内又细分吸烟和不吸烟的情况,并对应展示了肺癌患病与未患病的计数、期望计数以及占吸烟情况的百分比。

交叉表
图6:交叉表

2、卡方检验结果中,在老年群体、青年群体、中年群体中,p值分别<0.001、0.013 、<0.001,也就是说无论哪个年龄段,p值均小于0.05,这说明吸烟情况和肺癌状态存在一定关联。

交叉表
图7:交叉表

3、在风险评估表的结果,从给出的分层分析OR值可以看出,老年、青年、中年组吸烟情况(不吸烟 / 吸烟)情况分别为0.114、0.281、0.195 ,这说明吸烟人群比不吸烟人群得肺癌的可能性更高。

风险评估
图8:风险评估

4、在曼特尔-亨塞尔一般比值比估算结果中,比值比估算值为0.184,其对数为-1.695,对数标准误差是0.271,渐进显著性(双侧)小于0.001,这说明吸烟情况与肺癌状态之间关联的结果显著。

曼特尔-亨塞尔一般比值比估算结果
图9:曼特尔-亨塞尔一般比值比估算结果

以上SPSS分层卡方检验步骤,SPSS分层卡方检验结果解读的内容,本文通过样本案例为大家介绍了关于分层卡方检验数据加权、变量选择、分层设定、结果解读的全部过程,分层卡方检验适用于市场调研、社会科学、公共卫生等多个领域,可以帮助研究人员更精准地判断分类变量之间的真实关联,避免因混杂因素导致的结果偏差。

 

作者:瓜瓜

展开阅读全文

标签:SPSS卡方检验SPSS卡方检验步骤

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS非参数检验不显示组别怎么办 SPSS非参数检验结果怎么解读
在数据分析领域,研究者通常要对非正态分布的数据进行非参数检验,这样不仅可以判断不满足正态分布的变量之间是否存在关系,还能够清楚了解数据的秩次信息。今天,我们以SPSS非参数检验不显示组别怎么办,SPSS非参数检验结果怎么解读这两个问题为例,带大家了解一下SPSS非参数检验的相关知识。
2025-06-12
SPSS标准化残差散点图怎么画 SPSS标准化残差大于3怎么办
在针对因变量为数值型变量展开建模分析的时候,研究者可以使用SPSS线性回归的残差分析检验变量的正态性特征,例如以残差等方差性判断回归残差的方差齐性,进而有助于优化和改进线性数据建模。今天,我们SPSS标准化残差散点图怎么画,SPSS标准化残差大于3怎么办这两个问题为例,带大家了解一下SPSS标准化残差散点图的相关知识。
2025-06-12
SPSS标准化残差图怎么做 SPSS标准化残差图解读
在数据分析领域,如果研究者想对线性数据集的正态性进行分析,推荐使用SPSS残差图绘制的方法来高效掌握采集的数据信息,以便了解数据模型的拟合情况和误差分布。今天,我们以SPSS标准化残差图怎么做,SPSS标准化残差图解读这两个问题为例,带大家了解一下SPSS标准化残差的相关知识。
2025-06-11
SPSS中如何将文字表达改为数字 SPSS怎么把字符串改成数字格式
在数据分析领域,如果想要对多属性或多选项的变量进行分析,研究者需要对一些文字变量进行赋值来将字符串改为数字格式,便于后续的问卷数据统计和测量。今天,我们以SPSS中如何将文字表达改为数字,SPSS怎么把字符串改成数字格式这两个问题为例,带大家了解一下SPSS字符赋值的相关知识。
2025-06-10
SPSS数据透视表如何创建 SPSS数据透视表字段调整步骤
在数据分析领域,SPSS的功能设置不仅适用于分析繁杂数据组之间的相关关系,还能够计算各类数值并且制作出清晰明确的图表,例如数据透视表、交互作用图等。今天,我们以SPSS数据透视表如何创建,SPSS数据透视表字段调整步骤这两个问题为例,带大家了解一下SPSS透视表设置的相关知识。
2025-06-10
SPSS均值比较怎么操作 SPSS均值比较参数设置流程
在数据分析领域,如果研究者想要判断两组或多组数据在某一方面是否存在明显差异,可以使用SPSS的t检验、卡方检验等方法进行测量,不仅能得到清晰明确的数据表格查看各类占比情况,还能够据此知晓详细的参数设置情况。今天,我们以SPSS均值比较怎么操作,SPSS均值比较参数设置流程这两个问题为例,带大家了解一下SPSS均值比较的知识。
2025-06-06

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: