SPSS > 使用技巧 > SPSS多元非线性回归分析步骤 SPSS多元非线性回归分析结果

SPSS多元非线性回归分析步骤 SPSS多元非线性回归分析结果

发布时间:2024-03-05 15: 51: 00

品牌型号:微软

系统: Windows 10 64位专业版

软件版本: IBM SPSS Statistics

多元非线性回归主要用于进行多变量的分析比较和预测,当现实中的自变量和因变量,即输出和输入数据不成线性关系时,我们要通过对数型变化将非线性问题转换为线性问题,但这仅靠人力明显难以做到,这个时候我们就可以借助数据分析工具——SPSS来进行多元非线性回归分析,下面来为大家具体介绍有关SPSS多元非线性回归分析步骤,SPSS多元非线性回归分析结果的相关内容。

一、SPSS多元非线性回归分析步骤 

首先我们进行多元非线性回归分析时需要先介绍一个模型——logistic分析的回归模型。

logistic可以处理分类问题,logistic分析就是针对因变量是分类变量的而进行回归分析的一种统计方法,因变量的分类主要有两种类别——二元和多元,二元就是指因变量只有两种情况,比如客户是否续约,或者是否满意等情况,而多元就是指因变量有多种情况,比如客户最后决定购买哪种商品。

下面主要以二元logistic回归分析为例,具体操作步骤如下:

步骤一:依次点击【分析】,【回归】,【二元logistic…】(以下是有关客户是否满意即影响因素的量表,其中1是满意,0是不满意)。

打开二元logistic回归方法展示
图一:打开二元logistic回归方法展示

步骤二:将“客户是否满意”放入【因变量】,需要调查的影响因素放入【块(自变量)】,剩下的作为默认值处理,然后点击【确定】,就可以完成多元非线性回归分析了。

logistic回归面板展示
图二:logistic回归面板展示

二、SPSS多元非线性回归分析结果

完成分析后,我们需要对SPSS输出的结果进行解读,下面来为大家介绍一下最后的结果所代表的意义。

结果会输出九张图表,但我们主要只需要看其中的四张表格。

模型系数表格展示
图三:模型系数表格展示

(一)这张表我们需要看的是显著性,显著性<0.01时表明极其显著。

模型摘要展示
图四:模型摘要展示

(二)其中的R方主要用于比较多个模型比较,和其他回归模型一样,越接近1越好,虽然图表中的R方值不高,但这个数据最主要还是和其他模型相比较,尤其是在控制变量时,我们这次只有一个模型,不看它也可以。而【-2对数似然】近似于误差平方和,越小越好。

分类表展示
图五:分类表展示

(三)这张表代表预测准确度,其中对用户不满意的正确率为0%,满意的正确率为100%,其实这个数据在实际中出现的概率不大,准确率在50%以上就算是比较高的准确率了。

方程中的变量展示
图六:方程中的变量展示

(四)这张表的重点在最左边的那列数据【B】,这是方程系数,如果有多个自变量,可以比较系数来比较哪个自变量的影响大。

以上便是有关SPSS多元非线性回归分析步骤,SPSS多元非线性回归分析结果的相关内容,希望可以帮助到大家,更多教程欢迎去IBM SPSS Statistics中文网站进行了解。

展开阅读全文

标签:多元方差分析多元逻辑回归SPSS多元回归分析SPSS非线性回归SPSS多元非线性回归SPSS多元回归

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS重复测量怎样分析 SPSS重复测量球形性应如何检验
重复测量是数据分析中的一个重要环节。主要用来分析和检验数据样本中同一对象的相同指标在不同条件或者环境之下的变化情况,所以需要对这部分数据进行重复的测量和分析。例如我们统计一组大学生毕业后的就业情况,那么大学生的专业分类和性别都一致的情况下,就需要分析不同的就业影响因素对于最后就业率的影响。下面给大家介绍SPSS重复测量应当怎样分析,SPSS重复测量球形性应如何检验。
2026-01-14
SPSS亚组分析的注意事项 SPSS亚组分析结果解读
对于经常与数据分析打交道的小伙伴来说,想必对亚组分析这个概念应该不会感到陌生。亚组分析是用来检测异质性结果的方法之一,亚组分析的数据结果分为确证性、支持性和探索性三类。而我们在进行亚组分析时,可以借助数据分析软件SPSS的帮助,它一方面可以帮助我们得到亚组分析的数据结果,还能够把这些数据分析结果以报告形成呈现出来。接下来给大家介绍SPSS亚组分析的注意事项, SPSS亚组分析结果解读的具体内容。
2026-01-14
SPSS卡方检验样本不满足要求怎么办 卡方检验SPSS结果都小于0.5说明了什么
在数据分析的过程中,卡方样本检验是常见的一种统计方式。卡方检验主要用来检验数据样本之间的离散程度,进而判断不同数据之间的偏差值,如果数据样本在统计的时候不符合实际的统计需求,就可能导致卡方检验不满足要求。所以我们需要在统计的过程中对数据样本和统计方法进行调整,这样能够规避数据样本检验带来的结果偏差风险。下面以SPSS为例,给大家介绍SPSS卡方检验样本不满足要求怎么办,卡方检验SPSS结果都小于0.5说明了什么的具体内容。
2026-01-14
SPSS事后比较怎样进行 SPSS事后比较多重校正应如何设置
在数据分析的过程中,经常会在数据分析之后对它进行事后比较的操作。事后比较可以在方差分析的基础之上帮助我们快速找到具体存在差异的数据组。简单来说,大家可以把方差分析理解为起到了一个提示作用,告诉了我们数据样本中的均值并不相等且存在差异,但是如果想要找到具体的差异点在哪里,就需要用到事后比较了。而在进行事后比较的过程中,还会遇到设置多重校正的情况。下面以SPSS为例,给大家介绍SPSS事后比较怎样进行,SPSS事后比较多重校正应如何设置。
2026-01-14
SPSS怎么查看缺失值分布 SPSS数据缺失严重怎么处理更合理
我们在对数据样本进行统计时,经常会遇到排查缺失值的情况,缺失值指数据样本分析中出现的数值丢失情况。如果数据样本中存在的缺失值数量较多的情况,可能会导致数据分析的结果出现偏差。SPSS作为一款专业的数据分析软件,许多用户都会用它来进行数据分析,下面我们以SPSS为例,向大家介绍SPSS怎么查看缺失值分布,SPSS数据缺失严重怎么处理更合理的具体内容。
2026-01-14
SPSS变量类型怎么修改 SPSS变量标签修改后分析报错怎么办
在数据分析这个领域中,我们经常会面临着修改数据变量类型的情况。因为在一组数据变量中会存在着多种不同的变量类型(自变量、因变量、定类变量、定序变量等),这些变量类型在数据样本中担任着不同的角色,在样本分析中也有着不同的作用。下面就以SPSS数据分析软件为例,给大家介绍SPSS变量类型怎么修改,SPSS变量标签修改后分析报错怎么办的具体内容。
2026-01-14

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: