SPSS > 使用技巧 > 多因素方差分析和多元回归分析一样吗 SPSS多因素方差分析结果这么看

多因素方差分析和多元回归分析一样吗 SPSS多因素方差分析结果这么看

发布时间:2022-05-31 10: 22: 43

品牌型号:Dell N5010

系统:Windows 10

软件版本:IBM SPSS Statistics 试用版

当研究多个因素对因变量的作用时,我们常常需要引入多因素方差分析,多因素方差分析计算非常繁琐,我们可以借助IBM SPSS Statistics软件完成。可能大家对多因素方差分析和多元回归分析感到难以分辨,会有多因素方差分析和多元回归分析一样吗,SPSS多因素方差分析结果这么看恰当吗,这样的疑问,本文简单向大家作出解答。

一、多因素方差分析和多元回归分析一样吗?

进行不同组别间平均数比较时,我们可以借助t检验进行,但是我们会要求其他因素对结果的影响是一致的。如果存在某个因素未经控制或者未经校正,直接进行方差分析的话,可能会存在效应的混杂,无法进行判断,因此对于某些实例需要进行线性回归校正,也就是协方差分析。

协方差分析可以控制对最终结果有影响的数值变量,将其对总平方和的影响扣除,以准确的评估结果。因此多因素方差分析和多元回归分析并不一样,多因素方差分析过程中,可能会借助多元回归分析。

为了便于大家理解,以实例向大家说明,为研究三种肥料对植物生长的促进作用,对24株植物分组进行实验,统计植物的生长情况。

在本实例中,植物的初始高度是有差异的,符合协方差统计特点,进行协方差统计分析,向SPSS中录入数据如图1所示。

 

图1 录入数据
图1 录入数据

 

二、SPSS多因素方差分析结果这么看

第一小节实例的SPSS多因素协方差统计结果如图2所示,我们首先需要关注莱文等同性检验,此值如果大于0.05,认为方差齐性,可以进行后续的检验,如果此值小于0.05,则方差不齐,后续检验无意义。

 

图2 多因素协方差分析
图2 多因素协方差分析

 

然后我们需要关注施肥前植物高度差异是否有统计学意义,其显著性为0,小于0.05,认为植物高度差异有统计学意义。

而组别显著性为0.317,显著性大于0.05,无统计学差别,即三组肥料对植物促进作用无差别。需要用户注意的是,此时的统计值是扣除协变量影响之后的统计值。

三、如何进行SPSS多因素方差分析

首先点击分析,一般线性模型,单变量。

 

图3 进行协方差分析
图3 进行协方差分析

 

然后将施肥后加入因变量,将组别加入固定因子,将施肥前加入协变量。

 

图4 指定变量
图4 指定变量

 

然后点击模型,构建定制项,构建组别和施肥前的交互项,然后选择构建项,类型选择交互。

 

图5 构建定制项
图5 构建定制项

 

然后点击EM平均值,将组别加入到显示下列各项的平均值。

 

  图6 EM平均值
图6 EM平均值

然后点击选项,选择齐性检验,点击继续,回到主界面,点击确定即可。

 

图7 进行齐性检验
图7 进行齐性检验

 

多因素方差分析和多元回归分析一样吗?实际不一样,多因素方差分析可能会借助多元回归分析,SPSS多因素方差分析结果这么看来必须扣除协方差影响的,如果不进行扣除,将造成各效应混同,无法辨别。

 

作者:莱阳黎曼

展开阅读全文

标签:多因素方差分析多元方差分析方差分析SPSS多元回归分析SPSS多元回归

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS非参数检验怎么测中位数 SPSS非参数检验z值的意义
IBM SPSS Statistics这款软件对用户非常友好,例如非参数检验、数据随机性验证等统计分析,不需要复杂的操作,跟着步骤提示进行操作,即可快速生成统计结果表,新手也能快速掌握。今天我们就围绕SPSS非参数检验怎么测中位数,SPSS非参数检验z值的意义相关内容为大家展开介绍。
2026-01-30
SPSS随机值检验步骤 SPSS随机检验结果怎么看
很多人都听过IBM SPSS Statistics这款软件,它是数据分析的可靠搭档,不仅能轻松搞定数据的整理、转换,最后还能自动生成图表,对新手非常友好。对于经常需要进行学术研究、市场调研的用户来说是个常用的选择。今天我们就来说一下SPSS随机值检验步骤,SPSS随机检验结果怎么看的相关内容。
2026-01-30
SPSS为什么没有事后检验 SPSS事后检验结果怎么看
SPSS作为一款优秀的数据统计分析软件,深受数据统计分析人员的喜爱。SPSS之所以这么受欢迎,除了SPSS有很多的数据统计分析方法,可以帮助统计分析人员更高效的进行数据分析,还因为SPSS的人性化操作,一些刚入行的统计小白,也可以快速的掌握SPSS,接下来给大家详细介绍有关SPSS为什么没有事后检验,SPSS事后检验结果怎么看的相关内容。
2026-01-30
SPSS重复测量怎样分析 SPSS重复测量球形性应如何检验
重复测量是数据分析中的一个重要环节。主要用来分析和检验数据样本中同一对象的相同指标在不同条件或者环境之下的变化情况,所以需要对这部分数据进行重复的测量和分析。例如我们统计一组大学生毕业后的就业情况,那么大学生的专业分类和性别都一致的情况下,就需要分析不同的就业影响因素对于最后就业率的影响。下面给大家介绍SPSS重复测量应当怎样分析,SPSS重复测量球形性应如何检验。
2026-01-14
SPSS亚组分析的注意事项 SPSS亚组分析结果解读
对于经常与数据分析打交道的小伙伴来说,想必对亚组分析这个概念应该不会感到陌生。亚组分析是用来检测异质性结果的方法之一,亚组分析的数据结果分为确证性、支持性和探索性三类。而我们在进行亚组分析时,可以借助数据分析软件SPSS的帮助,它一方面可以帮助我们得到亚组分析的数据结果,还能够把这些数据分析结果以报告形成呈现出来。接下来给大家介绍SPSS亚组分析的注意事项, SPSS亚组分析结果解读的具体内容。
2026-01-14
SPSS卡方检验样本不满足要求怎么办 卡方检验SPSS结果都小于0.5说明了什么
在数据分析的过程中,卡方样本检验是常见的一种统计方式。卡方检验主要用来检验数据样本之间的离散程度,进而判断不同数据之间的偏差值,如果数据样本在统计的时候不符合实际的统计需求,就可能导致卡方检验不满足要求。所以我们需要在统计的过程中对数据样本和统计方法进行调整,这样能够规避数据样本检验带来的结果偏差风险。下面以SPSS为例,给大家介绍SPSS卡方检验样本不满足要求怎么办,卡方检验SPSS结果都小于0.5说明了什么的具体内容。
2026-01-14

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: