IBM SPSS Statistics 中文网站 > 使用技巧 > 多元方差分析和多因素方差分析的区别 spss多元方差分析图怎么做

多元方差分析和多因素方差分析的区别 spss多元方差分析图怎么做

发布时间:2022/04/20 15:54:06

品牌型号:微星 gl62m

系统:Windows 11 

软件版本:IBM SPSS Statistics

在IBM SPSS Statistics里经常对多个自变量和多个因变量进行研究分析,这时经常谈到两个概念“多元方差分析“和”多因素方差分析“,这个两个概念有什么区别呢?本文就来谈谈多元方差分析和多因素方差分析的区别,spss多元方差分析图怎么做。

一、多元方差分析和多因素方差分析的区别

1.多因素方差分析的定义:多因素方差分析是为了研究两个及两个以上自变量对一个因变量是否产生显著影响。多因素方差分析可以探究每个自变量对因变量的影响,还可以分析多个自变量对因变量的共同作用,最终找到自变量对因变量影响的最佳模型组合。

2.多元方差分析的定义:多元方差分析又称多变量分析,是研究多个自变量对多个数值型因变量的影响,适用于自变量对同时对两个或两个以上的因变量产生影响的情况,用来分析自变量取不同水平时这些因变量的均值是否存在显著性差异。

3.区别:多元方差分析是自变量对多个因变量的影响,这里“多元”的”多“是指因变量的多,多因素方差分析是多个自变量对因变量的影响,这里”多因素“的”多“是自变量的多。多元方差分析的自变量可以是多个的也可以是单个的,而因变量必须是多个的;而多因素方差分析,自变量必须多个的,因变量必须是单个的。

图1:线性分析中的单变量和多变量

二、IBM SPSS Statistics多元方差分析图怎么做

多元方差分析图主要是分布水平图和残差图两种图。

步骤:

1.导入数据

metapro添加图片

图1:导入数据页面

2.按顺序点击:分析——一般线性模型——多变量

metapro添加图片

图2:多变量线性模型选择

3.输入固定因子(控制变量)和因变量(观测变量)

metapro添加图片

图3:填入变量页面

4. 点击“选项”,勾选描述统计和分布-水平图、残差图。

metapro添加图片

图4:选项选择页面

5.点击确定,即生成了所需的分布-水平图和残差图。

metapro添加图片

图5:输出截图

分布水平图是由上面生成的描述统计表绘制的。

metapro添加图片

图5:输出的描述统计表

每个因变量的标准差和方差分别结合自变量的平均值绘制出图。通过这几张图判断是否等方差。

metapro添加图片

图6:地径增加量的标准差和平均值分布-水平图

metapro添加图片

图7:苗高增加量的标准差和平均值分布-水平图

metapro添加图片

图8:地径增加量的方差和平均值分布-水平图

metapro添加图片

图9:苗高增加量的标准差和平均值分布-水平图

 

不过主要还是看残差分析图。

metapro添加图片

图10:苗高增加量的残差图

metapro添加图片

图11:增加量的残差图

从残差分析图中可以看出描述变量之间的回归模型是否合理,如果合理残差值应该在一条水平带上(即等方差)。从残差分析图还可以看出预测值和实测值的关系,若预测值和实测值成一条类似于y=x的图线,所有点都在这条直线周边,则这个模型拟合得很好,类似于苗高的增加量的那张图。从预测值和标准残差的图中还可以看出是否存在线性关系。

如果等方差,还可以继续做下一步的正态性检验。

三、IBM SPSS Statistics的多元方差分析的优点

IBM SPSS Statistics的多元方差分析,可检验多个自变量与多个因变量的相关关系,不仅可以检验单个自变量对因变量的影响,也可以研究多个自变量对因变量的协同效应,是一个比较复杂的检验方法。

四、总结

这就是这次带来的多元方差分析和多因素方差分析的区别,spss多元方差分析图怎么做两个内容。希望能给大家在学习IBM SPSS Statistics上带来一些帮助。

标签:单因素方差分析多因素方差分析协方差分析多元方差分析方差分析

读者也访问过这里:
SPSS Statistics
一款功能强大的数据统计分析工具
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS进行变量赋值的相关操作
变量和个案是IBM SPSS数据界面很重要的两个部分,可以形象理解为地球仪上的经线和纬线。通俗一点讲数据界面的每一列是一种变量,如年龄性别等。一行中的所有变量又构成了一个个案,本篇文章着重讲解变量,个案就不做过多展开。在图1中有具体的标注,可以看一下变量和个案到底是什么样。
2021-02-23
如何通过SPSS对问卷进行效度分析
效度分析是指测量的根据或手段(在问卷中为问卷题目)是否能有效检测所需测量事物的程度,是问卷分析中几乎必须进行的一个环节,效度分析分为内容效度、准则效度和结构效度,问卷分析一般所使用的效度分析一般是结构效度。通过数据分析软件IBM SPSS Statistics(win)的效度分析功能我们可轻松获得关于问卷的效度分析结果,帮助我们更好设计或评估问卷。那么如何通过IBM SPSS Statistics对问卷进行效度分析。
2021-10-26