SPSS > 使用技巧 > 多元方差分析SPSS操作步骤 多元方差分析结果解读

多元方差分析SPSS操作步骤 多元方差分析结果解读

发布时间:2022-04-21 17: 04: 59

品牌型号:微星 gl62m

系统:Windows 11 

软件版本:IBM SPSS Statistics

在深入使用IBM SPSS Statistics时一定会使用到多元方差这一功能,那多元方差分析到底在SPSS上怎么操作使用呢?本文就给大家介绍一下多元方差分析SPSS操作步骤,多元方差分析结果解读。

一、IBM SPSS Statistics多元方差分析步骤

多元方差分析又称多变量分析,是研究多个自变量对多个数值型因变量的影响,多元方差分析是单因素方差分析的拓展,适用于自变量对同时对两个或两个以上的因变量产生影响的情况,用来分析自变量取不同水平时这些因变量的均值是否存在显著性差异。

1.导入数据

进入SPSS以后可以新建自己的数据库,或者导入自己的数据文件。

图1:导入数据
图1:导入数据

 

2.按顺序点击:分析——一般线性模型——多变量

图2:变量线性模型选择
图2:变量线性模型选择

 

3.输入固定因子(控制变量)和因变量(观测变量)

图3:填入变量页面
图3:填入变量页面

 

4.点击“事后比较”选项,勾选“LSD”

图4:lsd选择
图4:lsd选择

 

LSD即中文里的最小显著性法。

5.点击“选项”,勾选“齐性检验”即方差齐性检验。

图5:选项选择页面
图5:选项选择页面

 

6.返回,点击确定即可输出分析结果。

图6:输出结果
图6:输出结果

 

二、多元方差分析结果解读

在上述步骤结束后就会生成一系列可以编辑的图片,你可以点击这些图片进行细节上的编辑,接下来就按生成图片顺序来对多元方差分析的结果进行一下解读。

1.主体间因子

图7:主体因子
图7:主体因子

 

从中我们可以看出实验中有两个控制变量,每个控制变量各有三种变化量,每个变化量有9个个案数。

2. 协方差矩阵的博克斯等同性检验

 

图7:协方差矩阵的博克斯等同性检验
图7:协方差矩阵的博克斯等同性检验

 

显著性的值大于0.05即适合做多元方差分析。

3.多变量检验

图8:多变量检验
图8:多变量检验

 

海拔与施肥量四种检验结果显著性的值均小于0.05,所以拒绝原假设,即认为海拔与施肥量分别对苗高与地径都有显著影响(原假设为没有显著影响),而海拔和施肥量共同作用的显著性大于0.05,所以接受原假设,认为两者的交互作用没有显著影响苗高与地径。

4. 误差方差的莱文等同性检验

图9:误差方差的莱文等同性检验
图9:误差方差的莱文等同性检验

 

检查方差是否相等,显著性均大于0.05,即接受原假设,无显著差异,认为方差相等。

5. 主体间效应检验

图10:主体间效应检验
图10:主体间效应检验

 

这张图显示是海拔与施肥量两个因素分别对苗高与地径两个因变量的影响。

施肥量,海拔对苗高,地径的显著性都小于0.05,说明施肥量对苗高显著影响,对地径显著影响。海拔对苗高显著影响,对地径显著影响。而施肥量*海拔两者的交互作用对苗高与地径均没有显著影响。、

6.事后检验

图11:施肥量事后检验
图11:施肥量事后检验

 

图12:海拔事后检验
图12:海拔事后检验

 

事后检验是在上述分析结果证明方差分析显著时,继续对这些组进行两两比较找出两两之间差异的显著性,看看到底存在显著差异的是哪些组。

举一个例子来说,在第一图中判断苗高的增加量在施肥量10和施肥量20,施肥量10和施肥量30之间有没有显著差异,结果是两者的显著性均小于0.05,即施肥量10和施肥量20,施肥量10和施肥量30都有显著差异。

图13:事后检验部分节选
图13:事后检验部分节选

 

三、多元方差分析与回归分析的区别和联系。

方差分析是检验若干个均值相等的比较好的方法,方差分析常常对应因子(因素)是离散的(比如被分为几个组),响应变量为连续性数据(比如花萼的长度)分析,而回归则是因子(因素)和响应变量都是连续性数据,这尤其在线性回归中得到了充分的体现。广为流传的一种说法是,方差分析可以看作是线性回归的特例。

四、总结

这就是本次带来的多元方差分析SPSS操作步骤,多元方差分析结果解读。希望能给大家在学习spss上带来一些帮助。

展开阅读全文

标签:多因素方差分析多元方差分析方差分析方差齐性检验

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS交叉验证方法怎么用 SPSS交叉分析怎么理解
交叉验证是一种多维度的数据分析法,可以将多个变量进行交叉组合,生成二维或多维分析表格,以此展现出变量之间的关联性以及潜在规律。今天我就以SPSS交叉验证方法怎么用,SPSS交叉分析怎么理解这两个问题为例,来向大家讲解一下SPSS中关于交叉验证法的相关知识。
2025-09-18
SPSS数据排序如何设置 SPSS数据排序功能最大值和最小值
数据分析作为SPSS的重要主题,包含了数量计算、数据预测、数值对比等方面,在汇总统计各类数值的基础上,我们常常会需要对数据进行排序比较,而排序就是根据数值的大小来进行排列。本文以SPSS数据排序如何设置,SPSS数据排序功能最大值和最小值这两个问题为例,带大家了解一下SPSS数据排序的知识。
2025-09-18
SPSS数据透视表在哪 SPSS数据透视表怎么做
在数据分析领域,我们如何查看多种数据的汇总情况呢?SPSS的图表编辑功能可以计算、分析、统计各类数值,并用三线透视表的方式来清晰呈现测量结果,这就需要研究者熟悉图表操作的功能,能够对表格的初始格式进行修改与调整。本文以SPSS数据透视表在哪,SPSS数据透视表怎么做这两个问题为例,给大家介绍一下SPSS数据透视表的相关知识。
2025-09-18
SPSS自定义表格怎么设计 SPSS自定义表格行列表头设置方法
对于进行数据分析的研究者来说,SPSS设置的初始表格需要在格式上进行进一步的调整和规范,也就是需要SPSS用户自行设置和修改图表格式,借助SPSS图表编辑的工具来操作。本文以SPSS自定义表格怎么设计,SPSS自定义表格行列表头设置方法这两个问题为例,给大家介绍一下SPSS自定义表格的相关知识。
2025-09-18
SPSS数据加权有什么用 SPSS数据加权与不加权的区别
数据加权是数据分析过程中非常实用的一种数据分析技巧,根据每一项个案要素的重要程度,合理调整它们的总体占比,随后再进行计算,就能得到更加精准的分析结果。今天我就以SPSS数据加权有什么用,SPSS数据加权与不加权的区别这两个问题为例,来向大家讲解一下数据加权的相关知识。
2025-09-18
SPSS线性回归如何构建 SPSS线性回归自变量筛选方法
在数据分析领域,当自变量类型为定序或者定距变量的时候,我们可以借助SPSS线性回归的方法来建立变量之间函数变化关系的模型,这适用于自变量与因变量呈线性关系的情况,有助于后续的数据划分和定义。本文以SPSS线性回归如何构建,SPSS线性回归自变量筛选方法这两个问题为例,给大家介绍一下SPSS线性回归的相关知识。
2025-09-18

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: