IBM SPSS Statistics 中文网站 > 使用技巧 > SPSS双因素方差分析数据录入 SPSS双因素方差分析多重比较

SPSS双因素方差分析数据录入 SPSS双因素方差分析多重比较

发布时间:2022/04/19 18:43:57

品牌型号:联想扬天T4900d

系统:Windows 10 

软件版本:SPSS 试用版

 

进行双因素方差分析时,数据录入和多重比较是两大难点,用户常常会对数据录入比较困惑,不确定如何分组以及定义变量名称,对于双因素方差分析中的多重比较结果也不能恰当的进行解读,如何进行SPSS双因素方差分析数据录入?SPSS双因素方差分析多重比较如何解读?本文结合实例,向大家做详细的解释。

一.SPSS双因素方差分析数据录入

为调查笔记本电脑销量影响因素,某零售商首先进行了一年中各品牌笔记本销量的统计,后来发现用户受教育程度可能是影响笔记本销量的一个重要因素,因此,对统计数据进行了分类汇总,如表1所示。

表1 销售数据
表1 销售数据

 

进行统计前首先要搞清哪些是自变量(因子),哪些是因变量,对于本例来说,因子有两个:笔记本电脑品牌,用户学历。笔记本电脑品牌和学历均是不连续变量,可以使用整数空间进行定义。如图1所示。

打开变量视图,录入变量名称,分别为品牌,销量,销售量,变量格式默认设置为数字,我们需要在“值”处添加标签,进行变量定义,整数1,2,3,4分别对应品牌一,二,三,四。同样方法,将四个学历变量定义为整数1,2,3,4。

图1 设置变量属性录入数据
图1 设置变量属性录入数据

 

在图2所示数据视图界面录入销售数据,需要注意变量的组别和对应的销售量。录入完毕后就可以进行统计计算了,录入过程要有变量思想,恰当的进行变量的定义。

图2录入数据
图2录入数据

 

  1. 二.SPSS双因素方差分析多重比较

进行多重比较的目的在于找出对结果产生显著影响的一组自变量中,哪个自变量产生的影响最大。需要结合主效应分析进行,关于主效应分析我们将在第三小节进行介绍。下面介绍操作过程:

录入完毕后,依次点击分析—一般线性模型—单变量。

图3 SPSS双因素方差分析
图3 SPSS双因素方差分析

 

将销售量设置为因变量,将品牌和学历设置为固定因子。

单击图3中模型,如图4所示,选择构建项,将两个因子加入到模型中,然后在类型中选择主效应,点击继续。

图4 SPSS双因素方差分析
图4 SPSS双因素方差分析

 

单击事后比较,将因子加入到事后检验中,然后单选LSD,点击继续,点击确定。进行双因素方差分析。

图5 进行LSD事后比较
图5 进行LSD事后比较

 

通过主效应分析可知,学历是影响笔记本销售量的重要因素,那么学历对销量的影响是如何产生的,通过图6多重比较,我们可以了解到学历1与2,3,4之间的显著性系数分别为0.04,0.036,0.008,均小于0.05,存在显著性差异,特别是学历1与学历4,差异非常明显,而学历2与学历3,4间显著性水平分别为0.958和0.341,不存在显著性差异,因此初中学历与初中学历以上笔记本销售量存在显著性差异,初中学历与研究生以上学历销售量差异最为明显。

图6 进行多重比较
图6 进行多重比较

 

三.双因素方差分析中的主效应分析

上文提到,学历是影响销售量的重要因素,这个结论是如何得出的,我们可以通过查看主效应分析数据。如图7所示,学历显著性小于0.05,品牌显著性大于0.05,认为学历对销量影响显著,而品牌对销量影响不显著。因此得出上述结论,同时我们需要查看品牌和学历综合影响,综合影响应查看R 2,此值计算公式如表2所示:

 

表2 双因素联合效应计算公式
表2 双因素联合效应计算公式

 

R 2为0.697,也就是说品牌和学历对销量的影响为69.7%,而其余的30.3来源于其他影响,提示我们在统计误差之外,还可能有影响销量的因素。

图7 R平方计算
图7 R平方计算

 

进行SPSS双因素方差分析数据录入要有变量思想,根据统计数据的特点对变量进行恰当的定义,SPSS双因素方差分析多重比较目的在于找出对结果影响显著的一组变量中,哪个影响最为显著,需要同时进行主体间效应分析。借助SPSS这一强大的统计工具,遵循科学定义变量,正确的操作过程,先主体分析,再多重比较的思路,就能正确,快速的完成双因素方差分析。

 

作者:莱阳黎曼

标签:单因素方差分析多因素方差分析协方差分析多元方差分析方差分析

读者也访问过这里:
SPSS Statistics
一款功能强大的数据统计分析工具
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS进行变量赋值的相关操作
变量和个案是IBM SPSS数据界面很重要的两个部分,可以形象理解为地球仪上的经线和纬线。通俗一点讲数据界面的每一列是一种变量,如年龄性别等。一行中的所有变量又构成了一个个案,本篇文章着重讲解变量,个案就不做过多展开。在图1中有具体的标注,可以看一下变量和个案到底是什么样。
2021-02-23
如何通过SPSS对问卷进行效度分析
效度分析是指测量的根据或手段(在问卷中为问卷题目)是否能有效检测所需测量事物的程度,是问卷分析中几乎必须进行的一个环节,效度分析分为内容效度、准则效度和结构效度,问卷分析一般所使用的效度分析一般是结构效度。通过数据分析软件IBM SPSS Statistics(win)的效度分析功能我们可轻松获得关于问卷的效度分析结果,帮助我们更好设计或评估问卷。那么如何通过IBM SPSS Statistics对问卷进行效度分析。
2021-10-26