SPSS > 使用技巧 > SPSS双因素方差分析数据录入 SPSS双因素方差分析多重比较

SPSS双因素方差分析数据录入 SPSS双因素方差分析多重比较

发布时间:2022-04-19 18: 43: 57

品牌型号:联想扬天T4900d

系统:Windows 10 

软件版本:SPSS 试用版

 

进行双因素方差分析时,数据录入和多重比较是两大难点,用户常常会对数据录入比较困惑,不确定如何分组以及定义变量名称,对于双因素方差分析中的多重比较结果也不能恰当的进行解读,如何进行SPSS双因素方差分析数据录入?SPSS双因素方差分析多重比较如何解读?本文结合实例,向大家做详细的解释。

一.SPSS双因素方差分析数据录入

为调查笔记本电脑销量影响因素,某零售商首先进行了一年中各品牌笔记本销量的统计,后来发现用户受教育程度可能是影响笔记本销量的一个重要因素,因此,对统计数据进行了分类汇总,如表1所示。

表1 销售数据
表1 销售数据

 

进行统计前首先要搞清哪些是自变量(因子),哪些是因变量,对于本例来说,因子有两个:笔记本电脑品牌,用户学历。笔记本电脑品牌和学历均是不连续变量,可以使用整数空间进行定义。如图1所示。

打开变量视图,录入变量名称,分别为品牌,销量,销售量,变量格式默认设置为数字,我们需要在“值”处添加标签,进行变量定义,整数1,2,3,4分别对应品牌一,二,三,四。同样方法,将四个学历变量定义为整数1,2,3,4。

图1 设置变量属性录入数据
图1 设置变量属性录入数据

 

在图2所示数据视图界面录入销售数据,需要注意变量的组别和对应的销售量。录入完毕后就可以进行统计计算了,录入过程要有变量思想,恰当的进行变量的定义。

图2录入数据
图2录入数据

 

  1. 二.SPSS双因素方差分析多重比较

进行多重比较的目的在于找出对结果产生显著影响的一组自变量中,哪个自变量产生的影响最大。需要结合主效应分析进行,关于主效应分析我们将在第三小节进行介绍。下面介绍操作过程:

录入完毕后,依次点击分析—一般线性模型—单变量。

图3 SPSS双因素方差分析
图3 SPSS双因素方差分析

 

将销售量设置为因变量,将品牌和学历设置为固定因子。

单击图3中模型,如图4所示,选择构建项,将两个因子加入到模型中,然后在类型中选择主效应,点击继续。

图4 SPSS双因素方差分析
图4 SPSS双因素方差分析

 

单击事后比较,将因子加入到事后检验中,然后单选LSD,点击继续,点击确定。进行双因素方差分析。

图5 进行LSD事后比较
图5 进行LSD事后比较

 

通过主效应分析可知,学历是影响笔记本销售量的重要因素,那么学历对销量的影响是如何产生的,通过图6多重比较,我们可以了解到学历1与2,3,4之间的显著性系数分别为0.04,0.036,0.008,均小于0.05,存在显著性差异,特别是学历1与学历4,差异非常明显,而学历2与学历3,4间显著性水平分别为0.958和0.341,不存在显著性差异,因此初中学历与初中学历以上笔记本销售量存在显著性差异,初中学历与研究生以上学历销售量差异最为明显。

图6 进行多重比较
图6 进行多重比较

 

三.双因素方差分析中的主效应分析

上文提到,学历是影响销售量的重要因素,这个结论是如何得出的,我们可以通过查看主效应分析数据。如图7所示,学历显著性小于0.05,品牌显著性大于0.05,认为学历对销量影响显著,而品牌对销量影响不显著。因此得出上述结论,同时我们需要查看品牌和学历综合影响,综合影响应查看R 2,此值计算公式如表2所示:

 

表2 双因素联合效应计算公式
表2 双因素联合效应计算公式

 

R 2为0.697,也就是说品牌和学历对销量的影响为69.7%,而其余的30.3来源于其他影响,提示我们在统计误差之外,还可能有影响销量的因素。

图7 R平方计算
图7 R平方计算

 

进行SPSS双因素方差分析数据录入要有变量思想,根据统计数据的特点对变量进行恰当的定义,SPSS双因素方差分析多重比较目的在于找出对结果影响显著的一组变量中,哪个影响最为显著,需要同时进行主体间效应分析。借助SPSS这一强大的统计工具,遵循科学定义变量,正确的操作过程,先主体分析,再多重比较的思路,就能正确,快速的完成双因素方差分析。

 

作者:莱阳黎曼

展开阅读全文

标签:单因素方差分析多因素方差分析协方差分析多元方差分析方差分析SPSS分析数据

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS为什么没有事后检验 SPSS事后检验结果怎么看
SPSS作为一款优秀的数据统计分析软件,深受数据统计分析人员的喜爱。SPSS之所以这么受欢迎,除了SPSS有很多的数据统计分析方法,可以帮助统计分析人员更高效的进行数据分析,还因为SPSS的人性化操作,一些刚入行的统计小白,也可以快速的掌握SPSS,接下来给大家详细介绍有关SPSS为什么没有事后检验,SPSS事后检验结果怎么看的相关内容。
2026-01-30
SPSS重复测量怎样分析 SPSS重复测量球形性应如何检验
重复测量是数据分析中的一个重要环节。主要用来分析和检验数据样本中同一对象的相同指标在不同条件或者环境之下的变化情况,所以需要对这部分数据进行重复的测量和分析。例如我们统计一组大学生毕业后的就业情况,那么大学生的专业分类和性别都一致的情况下,就需要分析不同的就业影响因素对于最后就业率的影响。下面给大家介绍SPSS重复测量应当怎样分析,SPSS重复测量球形性应如何检验。
2026-01-14
SPSS亚组分析的注意事项 SPSS亚组分析结果解读
对于经常与数据分析打交道的小伙伴来说,想必对亚组分析这个概念应该不会感到陌生。亚组分析是用来检测异质性结果的方法之一,亚组分析的数据结果分为确证性、支持性和探索性三类。而我们在进行亚组分析时,可以借助数据分析软件SPSS的帮助,它一方面可以帮助我们得到亚组分析的数据结果,还能够把这些数据分析结果以报告形成呈现出来。接下来给大家介绍SPSS亚组分析的注意事项, SPSS亚组分析结果解读的具体内容。
2026-01-14
SPSS卡方检验样本不满足要求怎么办 卡方检验SPSS结果都小于0.5说明了什么
在数据分析的过程中,卡方样本检验是常见的一种统计方式。卡方检验主要用来检验数据样本之间的离散程度,进而判断不同数据之间的偏差值,如果数据样本在统计的时候不符合实际的统计需求,就可能导致卡方检验不满足要求。所以我们需要在统计的过程中对数据样本和统计方法进行调整,这样能够规避数据样本检验带来的结果偏差风险。下面以SPSS为例,给大家介绍SPSS卡方检验样本不满足要求怎么办,卡方检验SPSS结果都小于0.5说明了什么的具体内容。
2026-01-14
SPSS事后比较怎样进行 SPSS事后比较多重校正应如何设置
在数据分析的过程中,经常会在数据分析之后对它进行事后比较的操作。事后比较可以在方差分析的基础之上帮助我们快速找到具体存在差异的数据组。简单来说,大家可以把方差分析理解为起到了一个提示作用,告诉了我们数据样本中的均值并不相等且存在差异,但是如果想要找到具体的差异点在哪里,就需要用到事后比较了。而在进行事后比较的过程中,还会遇到设置多重校正的情况。下面以SPSS为例,给大家介绍SPSS事后比较怎样进行,SPSS事后比较多重校正应如何设置。
2026-01-14
SPSS怎么查看缺失值分布 SPSS数据缺失严重怎么处理更合理
我们在对数据样本进行统计时,经常会遇到排查缺失值的情况,缺失值指数据样本分析中出现的数值丢失情况。如果数据样本中存在的缺失值数量较多的情况,可能会导致数据分析的结果出现偏差。SPSS作为一款专业的数据分析软件,许多用户都会用它来进行数据分析,下面我们以SPSS为例,向大家介绍SPSS怎么查看缺失值分布,SPSS数据缺失严重怎么处理更合理的具体内容。
2026-01-14

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: