IBM SPSS Statistics 中文网站 > 使用技巧 > IBM SPSS Statistics的直方图与条形图是一样的吗?

IBM SPSS Statistics的直方图与条形图是一样的吗?

发布时间:2021/08/24 10:57:48

IBM SPSS Statistics的直方图与条形图在数据呈现上很相似,都是运用条状图形展示数据。但除了外形相似外,实际上,直方图与条形图无论是在数据类型、计算方法,还是在变量数量上都有一定的区别。

接下来,我们将通过一些例子来对比学习这两种图表形式。在本例中,将会使用到的是SPSS旧对话框中的条形图与直方图。

图1:条形图与直方图
图1:条形图与直方图

一、数据准备

本例使用到的是一组包含定性与定量变量的销售数据,包含了客流量、销售额、销售量三个定量变量,以及店铺类型、星级两个定性变量。

图2:销售数据
图2:销售数据

二、应用的变量类型不同

为什么数据要同时包含定性与定量两种变量?这是因为条形图与直方图的最大不同点在于适用的变量类型不同。

先来看一下直方图的变量设置面板,其中仅包含了一个变量,说明直方图适用于单变量的数据展示。另外,直方图可同时展示正态曲线。

我们将销售额设为直方图的变量。

图3:直方图设置
图3:直方图设置

如图4所示,直方图展示了销售额的分布,同时,通过正态曲线可检验数据是否符合正态分布。

需要注意的是,直方图对数值进行了分段,展示的是分段数值所占的频率。

图4:销售额直方图
图4:销售额直方图

当我们将店铺类型添加到直方图的变量时,SPSS会弹出警告,说明直方图变量不能添加字符串变量,因无法实现数值的分段。

图5:不允许字符串变量
图5:不允许字符串变量

与直方图相反,条形图则适用于定性数据,展示的是类别变量的计数值。

我们将店铺类型设为类别轴。

图6:条形图变量设置
图6:条形图变量设置

如图7所示,从店铺类型条形图可观察到不同店铺的计数,加盟店比直营店多一些。

图7:店铺类型条形图
图7:店铺类型条形图

条形图虽没有严格限制应用的数据类型,但如果将定量数据设为类别轴的话,条形图会显得很臃肿,并且也没什么展示意义。这是因为条形图无分段功能,无法对数值进行分段计数。

图8:销售额条形图
图8:销售额条形图

三、可同时展示的变量数量不同

在可同时展示的变量数量上,条形图有很大的优势,可同时展示两个变量作簇状条形图与堆积条形图。

图9:条形图类型
图9:条形图类型

簇状条形图可设定类别轴变量与聚类定义依据变量,来同时对比两个变量的数据分布。

我们将店铺类型设为类别轴、星级设为聚类定义依据。

图10:簇状条形图
图10:簇状条形图

根据以上变量设置,可得到如图11所示的簇状条形图,可同时对比加盟店与直营店中不同星级店铺的数量。比如,可以观察到,加盟店的四星店铺比直营店的四星店铺多。

图11:店铺类型与星级簇状条形图
图11:店铺类型与星级簇状条形图

堆积条形图则可以设置类别轴与堆积定义依据来观察A变量中B变量的占比。

我们将店铺类型设为类别轴、星级设为堆积定义依据。

图12:堆积条形图
图12:堆积条形图

根据以上设置,可得到加盟店与直营店的星级店铺占比。

图13:店铺类型与星级堆积条形图
图13:店铺类型与星级堆积条形图

四、小结

综上所述,虽然SPSS的直方图与条形图都是条状图,但两种图表应用的变量类型、变量数量都有所不同。

直方图适用于定量数据,并可展示数据的分段频率;而条形图适用于定性数据,可通过簇状条形图与堆积条形图展示两个变量的数据。

作者:泽洋

标签:直方图spss
SPSS Statistics
云版首发!秒杀只需1分钱!
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
最新文章
1分钱秒杀!云版大数据统计与应用分析解决方案上线
在经历了数个月的悉心筹备后,云版大数据统计与应用分析解决方案终于要和大家见面了!为了让更多人能体验到本服务,我们特别发起了限量1分钱秒杀活动。
2022-11-24
spss缺失值分析步骤 spss缺失值分析结果怎么看
在数据调查过程中,工作人员常常会遇到数据缺失现象。数据缺失分为三类,随机缺失,完全随机缺失,非随机缺失。无论哪种缺失,都可能导致严重的问题,或者大大降低统计的精度。利用IBM SPSS Statistics可以对数据缺失值进行分析,关于SPSS缺失值分析步骤是怎样的,SPSS缺失值分析结果怎么看的问题?本文结合实例,为大家做简单介绍。
2022-11-24
spss标签值不显示 spss标签值乱码
使用IBM SPSS Statistics进行统计分析的过程中,为了工作便利,常常会为变量设置标签。在设置标签过程中,常常会遇到各种问题,如SPSS标签值不显示,SPSS标签值乱码等问题,这些问题产生的根源是什么?如何解决?本文向大家做简单介绍。
2022-11-21
IBM SPSS Statistics云版本登录使用教程
感谢您订阅IBM SPSS Statistics云版本服务,IBM SPSS Statistics云版本是由思杰马克丁+IBM+阿里云联合推出,帮助用户解决短时间使用正版软件的需求,提供周付费、月付费两种购买模式,性价比极高。那么在购买了IBM SPSS Statistics云版本之后,应该如何登陆使用呢,本篇教程就来告诉大家使用方法。
2022-11-23
spss中t值和p值是什么意思 spss中t值和p值的关系
在统计分析过程中,常常会遇到这样的情况:检验两个相关的样本是否来自具有相同均值的总体,就会用到t检验。t检验(Student's t test),主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布, t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。利用IBM SPSS Statistics统计分析软件进行t检验可以避免繁杂的统计学计算,快速给出结果,供用户分析。SPSS中t值和p值是什么意思,SPSS中t值和p值的关系是什么,本文结合实例,向大家做简单的介绍。
2022-11-16
spss pearson相关性分析步骤 spss pearson相关性分析结果怎么看
Pearson(皮尔逊)相关性指的是联合分布服从二维正态分布的随机变量X,Y之间的简单线性相关关系,X,Y之间的相关关系由简单相关系数r表示。利用IBM SPSS Statistics可以非常快速地完成两个随机变量X,Y间的Pearson(皮尔逊)相关性分析,SPSS Pearson相关性分析步骤是什么,SPSS Pearson相关性分析结果怎么看,本文结合实例,向大家做简单的介绍。
2022-11-14

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容:

咨询热线

在线咨询

限时折扣