SPSS > 使用技巧 > IBM SPSS Statistics的直方图与条形图是一样的吗?

IBM SPSS Statistics的直方图与条形图是一样的吗?

发布时间:2021-08-24 10: 57: 48

IBM SPSS Statistics的直方图与条形图在数据呈现上很相似,都是运用条状图形展示数据。但除了外形相似外,实际上,直方图与条形图无论是在数据类型、计算方法,还是在变量数量上都有一定的区别。

接下来,我们将通过一些例子来对比学习这两种图表形式。在本例中,将会使用到的是SPSS旧对话框中的条形图与直方图。

图1:条形图与直方图
图1:条形图与直方图

一、数据准备

本例使用到的是一组包含定性与定量变量的销售数据,包含了客流量、销售额、销售量三个定量变量,以及店铺类型、星级两个定性变量。

图2:销售数据
图2:销售数据

二、应用的变量类型不同

为什么数据要同时包含定性与定量两种变量?这是因为条形图与直方图的最大不同点在于适用的变量类型不同。

先来看一下直方图的变量设置面板,其中仅包含了一个变量,说明直方图适用于单变量的数据展示。另外,直方图可同时展示正态曲线。

我们将销售额设为直方图的变量。

图3:直方图设置
图3:直方图设置

如图4所示,直方图展示了销售额的分布,同时,通过正态曲线可检验数据是否符合正态分布。

需要注意的是,直方图对数值进行了分段,展示的是分段数值所占的频率。

图4:销售额直方图
图4:销售额直方图

当我们将店铺类型添加到直方图的变量时,SPSS会弹出警告,说明直方图变量不能添加字符串变量,因无法实现数值的分段。

图5:不允许字符串变量
图5:不允许字符串变量

与直方图相反,条形图则适用于定性数据,展示的是类别变量的计数值。

我们将店铺类型设为类别轴。

图6:条形图变量设置
图6:条形图变量设置

如图7所示,从店铺类型条形图可观察到不同店铺的计数,加盟店比直营店多一些。

图7:店铺类型条形图
图7:店铺类型条形图

条形图虽没有严格限制应用的数据类型,但如果将定量数据设为类别轴的话,条形图会显得很臃肿,并且也没什么展示意义。这是因为条形图无分段功能,无法对数值进行分段计数。

图8:销售额条形图
图8:销售额条形图

三、可同时展示的变量数量不同

在可同时展示的变量数量上,条形图有很大的优势,可同时展示两个变量作簇状条形图与堆积条形图。

图9:条形图类型
图9:条形图类型

簇状条形图可设定类别轴变量与聚类定义依据变量,来同时对比两个变量的数据分布。

我们将店铺类型设为类别轴、星级设为聚类定义依据。

图10:簇状条形图
图10:簇状条形图

根据以上变量设置,可得到如图11所示的簇状条形图,可同时对比加盟店与直营店中不同星级店铺的数量。比如,可以观察到,加盟店的四星店铺比直营店的四星店铺多。

图11:店铺类型与星级簇状条形图
图11:店铺类型与星级簇状条形图

堆积条形图则可以设置类别轴与堆积定义依据来观察A变量中B变量的占比。

我们将店铺类型设为类别轴、星级设为堆积定义依据。

图12:堆积条形图
图12:堆积条形图

根据以上设置,可得到加盟店与直营店的星级店铺占比。

图13:店铺类型与星级堆积条形图
图13:店铺类型与星级堆积条形图

四、小结

综上所述,虽然SPSS的直方图与条形图都是条状图,但两种图表应用的变量类型、变量数量都有所不同。

直方图适用于定量数据,并可展示数据的分段频率;而条形图适用于定性数据,可通过簇状条形图与堆积条形图展示两个变量的数据。

作者:泽洋

展开阅读全文

标签:spss直方图

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS怎么进行描述性统计分析 SPSS均值标准差计算步骤
在统计学当中,描述性分析主要用来对调查样本总体的数据进行相关描述性质的研究(比如用图形的方式描述分析)。而在进行描述性分析的时候,我经常会用到SPSS数据分析软件,这款软件给我提供了许多数据分析的帮助。接下来给大家介绍SPSS怎么进行描述性统计分析,SPSS均值标准差计算步骤的具体内容。
2026-01-08
SPSS怎么做回归分析 SPSS回归结果不显著怎么办
在数据分析的领域中,回归分析相当于为数据样本开启了一道未来大门,它可以帮助我们评估和判断数据样本未来的走势和发展方向,同时帮助我们判断不同数据变量之间的关系。如果遇到回归结果不显著的情况,我们也需要对这部分数据进行处理,避免出现无效的分析情况。下面以SPSS为例,给大家介绍SPSS怎么做回归分析, SPSS回归结果不显著怎么办的具体内容。
2026-01-08
SPSS如何做方差分析 SPSS方差分析结果显著性该怎么解释
在数据分析这个领域当中,许多小伙伴经常会遇到进行方差分析的操作。方差分析在数据统计中是一个常见的数据处理方式,主要用来检验数据样本的离散分布和稳定性情况。SPSS既能够帮助我们进行专业的方差分析,还可以得到数据的分析报告。接下来以SPSS为例,向大家介绍SPSS如何做方差分析,SPSS方差分析结果显著性该怎么解释的具体内容。
2026-01-08
SPSS偏度和峰度的分析步骤 SPSS偏度和峰度的分析结果解读
偏度和峰度是我们在进行数据分析的过程中,判断数据是否符合正态分布的重要标准之一,通过这两个数值可以很清晰地看出数据的整体走势和集中状态。因此这两项数值也经常被用于市场学分析、股市分析中,能够帮忙用户去发现某些潜在的规律。今天我就以SPSS偏度和峰度的分析步骤,SPSS偏度和峰度的分析结果解读这两个问题为例,来向大家讲解一下关于偏度和峰度的相关知识。
2026-01-08
SPSS如何计算ROC曲线截断值 SPSS如何计算变异系数
SPSS是一款应用较为广泛的数据统计分析软件,无论是社会研究领域,还是教育、科学研究领域都有其身影,而SPSS之所以这么受欢迎也是有其原因的,SPSS不仅仅可以服务于统计行业的小白,其内部的语法还可以服务于资深的统计分析人员,满足各种统计分析需求,接下来给大家介绍的是有关SPSS如何计算ROC曲线截断值,SPSS如何计算变异系数的相关内容。
2026-01-08

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: