SPSS > 使用技巧 > IBM SPSS Statistics的直方图与条形图是一样的吗?

IBM SPSS Statistics的直方图与条形图是一样的吗?

发布时间:2021-08-24 10: 57: 48

IBM SPSS Statistics的直方图与条形图在数据呈现上很相似,都是运用条状图形展示数据。但除了外形相似外,实际上,直方图与条形图无论是在数据类型、计算方法,还是在变量数量上都有一定的区别。

接下来,我们将通过一些例子来对比学习这两种图表形式。在本例中,将会使用到的是SPSS旧对话框中的条形图与直方图。

图1:条形图与直方图
图1:条形图与直方图

一、数据准备

本例使用到的是一组包含定性与定量变量的销售数据,包含了客流量、销售额、销售量三个定量变量,以及店铺类型、星级两个定性变量。

图2:销售数据
图2:销售数据

二、应用的变量类型不同

为什么数据要同时包含定性与定量两种变量?这是因为条形图与直方图的最大不同点在于适用的变量类型不同。

先来看一下直方图的变量设置面板,其中仅包含了一个变量,说明直方图适用于单变量的数据展示。另外,直方图可同时展示正态曲线。

我们将销售额设为直方图的变量。

图3:直方图设置
图3:直方图设置

如图4所示,直方图展示了销售额的分布,同时,通过正态曲线可检验数据是否符合正态分布。

需要注意的是,直方图对数值进行了分段,展示的是分段数值所占的频率。

图4:销售额直方图
图4:销售额直方图

当我们将店铺类型添加到直方图的变量时,SPSS会弹出警告,说明直方图变量不能添加字符串变量,因无法实现数值的分段。

图5:不允许字符串变量
图5:不允许字符串变量

与直方图相反,条形图则适用于定性数据,展示的是类别变量的计数值。

我们将店铺类型设为类别轴。

图6:条形图变量设置
图6:条形图变量设置

如图7所示,从店铺类型条形图可观察到不同店铺的计数,加盟店比直营店多一些。

图7:店铺类型条形图
图7:店铺类型条形图

条形图虽没有严格限制应用的数据类型,但如果将定量数据设为类别轴的话,条形图会显得很臃肿,并且也没什么展示意义。这是因为条形图无分段功能,无法对数值进行分段计数。

图8:销售额条形图
图8:销售额条形图

三、可同时展示的变量数量不同

在可同时展示的变量数量上,条形图有很大的优势,可同时展示两个变量作簇状条形图与堆积条形图。

图9:条形图类型
图9:条形图类型

簇状条形图可设定类别轴变量与聚类定义依据变量,来同时对比两个变量的数据分布。

我们将店铺类型设为类别轴、星级设为聚类定义依据。

图10:簇状条形图
图10:簇状条形图

根据以上变量设置,可得到如图11所示的簇状条形图,可同时对比加盟店与直营店中不同星级店铺的数量。比如,可以观察到,加盟店的四星店铺比直营店的四星店铺多。

图11:店铺类型与星级簇状条形图
图11:店铺类型与星级簇状条形图

堆积条形图则可以设置类别轴与堆积定义依据来观察A变量中B变量的占比。

我们将店铺类型设为类别轴、星级设为堆积定义依据。

图12:堆积条形图
图12:堆积条形图

根据以上设置,可得到加盟店与直营店的星级店铺占比。

图13:店铺类型与星级堆积条形图
图13:店铺类型与星级堆积条形图

四、小结

综上所述,虽然SPSS的直方图与条形图都是条状图,但两种图表应用的变量类型、变量数量都有所不同。

直方图适用于定量数据,并可展示数据的分段频率;而条形图适用于定性数据,可通过簇状条形图与堆积条形图展示两个变量的数据。

作者:泽洋

展开阅读全文

标签:spss直方图

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS如何做因子分析 SPSS因子载荷解释不清晰怎么办
每当我们在进行数据分析的工作时,因子分析是绕不开的一个话题。它在一组数据的分析中占据了重要的位置,主要用来检验不同变量之间是否存在共性的因子,而这些因子会影响数据的变量,例如从学生的考试成绩中判断是否存在共有的数据因子,这部分共有的数据因子对学生的成绩好坏会产生影响。下面我们以一款专业的数据分析软件SPSS为例,向大家介绍SPSS如何做因子分析,SPSS因子载荷解释不清晰怎么办的具体内容。
2025-11-25
SPSS个案排秩的优缺点 SPSS个案排秩的步骤
SPSS作为一款优秀的数据统计分析软件,可以帮助我们解决很多复杂的统计分析工作,例如SPSS中的个案排秩功能,能让我们对数据集中的某个变量数据进行大小排序,并生成新变量,可以更直观的展现变量数据。接下来给大家介绍的就是有关SPSS个案排秩的相关内容,SPSS个案排秩的优缺点,SPSS个案排秩的步骤。
2025-11-25
SPSS怎么生成随机数 SPSS如何计算新变量
SPSS作为一款老牌数据统计分析软件,之所以深受大家的喜爱,除了因为本身的统计分析功能,还因为SPSS有很多比较人性化的设计,例如SPSS中的语法就可以实现很多SPSS本身没有的功能。下面给大家详细讲解SPSS怎么生成随机数,SPSS如何计算新变量。
2025-11-25
SPSS显著性小于0.001的意义 SPSS显著性大于0.05怎么办
在使用SPSS软件进行数据分析工作的过程中,得到的显著性水平分析结果具有极为重要的作用。它能够帮助我们衡量变量之间是否存在真实的关联,或者不同组别数据之间是否存在实质性的差异。今天我们就一起来探讨关于SPSS显著性小于0.001的意义,SPSS显著性大于0.05怎么办的问题。
2025-11-25
没有原始数据怎么用SPSS做分析 用SPSS做分析的步骤有哪些
数据分析在科研领域是一项极为重要的技能,在自然科学领域的农业育种、医学的药物实验、天文学行星数据和社会科学领域的社会调查、人口调查等等多个领域,都会使用到这项技能。SPSS就是一款可以帮助我们训练数据分析技能的软件。我们在初次接触数据分析时大多都会遇到诸如没有原始数据或不知道如何进行分析的问题。接下来我就以SPSS为例给大家介绍一下没有原始数据怎么用SPSS做分析,用SPSS做分析的步骤有哪些。
2025-11-25
SPSS进行问卷分析的具体步骤 如何用SPSS做问卷的信效度分析
在收集完成问卷分析数据后,我们都会选择使用SPSS对问卷调查的数据进行统计分析,而之所以选择SPSS,不仅仅因为SPSS的分析功能齐全,还因为SPSS的很多功能更适合对问卷调查的数据进行统计分析。下面给大家详细介绍SPSS进行问卷分析的具体步骤,如何用SPSS做问卷的信效度分析的相关内容。
2025-11-25

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: