SPSS > 使用技巧 > SPSS中应用时间序列预测的步骤(模型与结果解读)

SPSS中应用时间序列预测的步骤(模型与结果解读)

发布时间:2021-08-23 14: 47: 25

《SPSS中应用时间序列预测的步骤(定义时间与序列图)》一文中,我们已经完成了年份变量的创建,并通过绘制GDP的时间序列图,观察到CDP的量具有时间趋势性,可进行时间序列的模型分析。

接下来,我们继续应用IBM SPSS Statistics进行GDP时间序列模型的创建与分析。

一、时间序列模型

先来回顾一下GDP的时间序列图,可以看到,GDP的量随着时间的推移,呈现出低速-中速-高速的时间增长趋势。

图1:序列图
图1:序列图

根据以上增长趋势,构建时间序列模型。

如图2所示,依次单击SPSS的分析-时间序列预测-创建传统模型选项。

图2:创建传统模型
图2:创建传统模型

如图3所示,时间序列模型包含了变量、统计、图、输出过滤等选项。我们需根据模型所需设置相关的选项。

在变量设置中,可以看到,变量中出现了新生成的“Year”变量。将GDP设为因变量,Year设为自变量,构建GDP的时间序列模型。

在模型分析方法中,选择指数平滑法,该方法是一种加权移动平均法,是将当期观察值与前一期指数平滑值进行加权平均,既考虑了过去的数值,但又赋予逐渐减弱的权重,是常用的一种时间序列分析法。

图3:变量设置
图3:变量设置

设定指数平滑法后,单击其旁边的“条件”选项,选择模型的类型,为了更好地观察不同模型的效果,可依次勾选霍尔特线性趋势、布朗线性趋势与衰减趋势来得到不同的模拟结果。

图4:条件设置
图4:条件设置

在统计设置中,勾选以下数值:

1. 拟合测量:平稳R方与R方,检验模型的拟合优度

2. 用于比较模型的统计:拟合优度

3. 显示预测值,以得到GDP的预测数值

图5:统计设置
图5:统计设置

在图设置中,勾选每个图显示的内容中的“实测值”、“预测值”与“拟合值”,观察模型预测的效果。

图6:图设置
图6:图设置

最后,在选项设置中,选择“评估期结束后的第一个个案到指定日期之间的个案”,并在其日期设置中将预测的年份设为“2026”。

图7:选项设置
图7:选项设置

二、结果解读

完成以上设置后运算结果。

如图8所示,三个模型的“实测值”、“预测值”与“拟合值”曲线重合度高,说明模型拟合效果好。

图8:模型图

而根据三个模型的R方数值(均为0.996),也说明模型的拟合效果好,三个模型均可以用于预测分析。

图9:模型拟合优度
图9:模型拟合优度

根据以上三个模型,得到如图10所示的2020-2026年的GDP预测量。霍尔特与衰减趋势模型的预测值相近,而布朗预测值则较以上两者高一些,说明布朗模型对未来GDP的发展更为乐观。

我们可以根据经济趋势、国际环境(比如在新冠病毒的影响下),选择或保守或乐观的预测模型。

图10:预测值
图10:预测值

三、小结

综上所述,通过应用IBM SPSS Statistics的时间序列模型分析,并选择指数平滑法对GDP的量进行霍尔特线性趋势、布朗线性趋势与衰减趋势的模型分析。以上三个模型都呈现很好的拟合效果,但布朗模型的预测结果更为乐观。

作者:泽洋

展开阅读全文

标签:SPSS时间序列

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS非参数检验怎么测中位数 SPSS非参数检验z值的意义
IBM SPSS Statistics这款软件对用户非常友好,例如非参数检验、数据随机性验证等统计分析,不需要复杂的操作,跟着步骤提示进行操作,即可快速生成统计结果表,新手也能快速掌握。今天我们就围绕SPSS非参数检验怎么测中位数,SPSS非参数检验z值的意义相关内容为大家展开介绍。
2026-01-30
SPSS随机值检验步骤 SPSS随机检验结果怎么看
很多人都听过IBM SPSS Statistics这款软件,它是数据分析的可靠搭档,不仅能轻松搞定数据的整理、转换,最后还能自动生成图表,对新手非常友好。对于经常需要进行学术研究、市场调研的用户来说是个常用的选择。今天我们就来说一下SPSS随机值检验步骤,SPSS随机检验结果怎么看的相关内容。
2026-01-30
SPSS为什么没有事后检验 SPSS事后检验结果怎么看
SPSS作为一款优秀的数据统计分析软件,深受数据统计分析人员的喜爱。SPSS之所以这么受欢迎,除了SPSS有很多的数据统计分析方法,可以帮助统计分析人员更高效的进行数据分析,还因为SPSS的人性化操作,一些刚入行的统计小白,也可以快速的掌握SPSS,接下来给大家详细介绍有关SPSS为什么没有事后检验,SPSS事后检验结果怎么看的相关内容。
2026-01-30
SPSS重复测量怎样分析 SPSS重复测量球形性应如何检验
重复测量是数据分析中的一个重要环节。主要用来分析和检验数据样本中同一对象的相同指标在不同条件或者环境之下的变化情况,所以需要对这部分数据进行重复的测量和分析。例如我们统计一组大学生毕业后的就业情况,那么大学生的专业分类和性别都一致的情况下,就需要分析不同的就业影响因素对于最后就业率的影响。下面给大家介绍SPSS重复测量应当怎样分析,SPSS重复测量球形性应如何检验。
2026-01-14
SPSS亚组分析的注意事项 SPSS亚组分析结果解读
对于经常与数据分析打交道的小伙伴来说,想必对亚组分析这个概念应该不会感到陌生。亚组分析是用来检测异质性结果的方法之一,亚组分析的数据结果分为确证性、支持性和探索性三类。而我们在进行亚组分析时,可以借助数据分析软件SPSS的帮助,它一方面可以帮助我们得到亚组分析的数据结果,还能够把这些数据分析结果以报告形成呈现出来。接下来给大家介绍SPSS亚组分析的注意事项, SPSS亚组分析结果解读的具体内容。
2026-01-14
SPSS卡方检验样本不满足要求怎么办 卡方检验SPSS结果都小于0.5说明了什么
在数据分析的过程中,卡方样本检验是常见的一种统计方式。卡方检验主要用来检验数据样本之间的离散程度,进而判断不同数据之间的偏差值,如果数据样本在统计的时候不符合实际的统计需求,就可能导致卡方检验不满足要求。所以我们需要在统计的过程中对数据样本和统计方法进行调整,这样能够规避数据样本检验带来的结果偏差风险。下面以SPSS为例,给大家介绍SPSS卡方检验样本不满足要求怎么办,卡方检验SPSS结果都小于0.5说明了什么的具体内容。
2026-01-14

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: