SPSS > 使用技巧 > IBM SPSS Statistics中应用时间序列预测的步骤(定义时间与序列图)

IBM SPSS Statistics中应用时间序列预测的步骤(定义时间与序列图)

发布时间:2021-08-20 15: 52: 59

时间序列,简单来理解,就是统计数值会随着时间的先后顺序而呈现一定趋势的数列。在经济研究中,经常会涉及到时间序列的问题,比如销售数据、GDP数据、人均收入数据等,这些数据会随着时间增长而呈现一定趋势。

时间序列包括年份、季节、月份等趋势类型,由于时间序列具有时间趋势性,因此常用作预测分析。其原理是根据数据在一定时间范围内的趋势,构建预测模型,并用作实际的预测分析。

本文将会运用SPSS构建时间序列模型,来简单预测未来GDP的量。

一、定义时间

由于时间序列涉及到时间的先后顺序,因此,我们需要先构建一个时间的变量。虽然数据已包含了年份变量,但SPSS无法直接将其识别为年份,需通过定义的方式为数据创建一个新的年份变量。

图1:GDP数据
图1:GDP数据

如图2所示,依次单击数据-定义日期和时间选项。

图2:定义日期与时间
图2:定义日期与时间

接着,在弹出的定义日期框中,选择个案的时间维度,本例选择“年”。

需注意的是,定义日期时,SPSS是从第一个个案开始赋值的,并且按照升序赋值。但本例中的第一个个案是2019年,且呈现降序年份,因此,需先进行数据的重新排序。

图3:定义年
图3:定义年

如图4所示,依次单击数据-个案排序。

图4:个案排序
图4:个案排序

接着,如图5所示,将年份添加到排序依据,并选择“升序”的排列顺序,即可将数据重新排序为以年份的升序排列。

图5:升序排序
图5:升序排序

重新排序数据后,再打开定义日期功能,选择个案是“年”的选项,并将第一个个案值设为“1960”。

图6:定义日期
图6:定义日期

完成以上设置后,在SPSS的输出文档会输出新生成的变量,即Year_与DATE_变量。

图7:运算输出
图7:运算输出

二、绘制序列图

在进行时间序列模型的创建前,建议先绘制序列图,观察数据的时间趋势性。

如图8所示,依次单击分析-时间序列预测-序列图。

图8:序列图
图8:序列图

在序列图设置面板,将GDP数值设为变量、新生成的YEAR变量设为时间轴标签。

图9:设置变量
图9:设置变量

如图10的序列图所示,GDP的量在1960-1993年之间呈现低速增长,在1994-2002年之间增长速度提升,而从2003年开始呈现高速增长,说明GDP数据呈现明显的时间序列特征。

图10:序列图
图10:序列图

三、小结

综上所述,在创建时间序列模型前,需先通过IBM SPSS Statistics的定义日期功能,定义时间序列模型的时间变量。另外,还建议使用时间序列中的序列图,验证数据的时间趋势。

关于后续的模型创建与结果解读,将在《SPSS中应用时间序列预测的步骤(模型与结果解读)》一文中会继续进行。

作者:泽洋

展开阅读全文

标签:SPSS时间序列

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS因子和协变量的区别和联系 SPSS因子和协变量怎么选
在SPSS数据统计分析方法中,回归分析是比较常用到的数据分析方法,其中多元 Logistic 回归分析是较为复杂的一种分析方法,因为其中包含了因子、协变量、因变量、自变量等多个变量,在进行分析的时候,需要区分好这些变量,接下来重点给大家讲解,SPSS因子和协变量的区别和联系,SPSS因子和协变量怎么选。
2025-05-08
SPSS因子载荷值是哪个 SPSS因子载荷系数要大于多少
如果我们研究的问题里面有很多的影响因素,而且每个因素都好像很重要,无法剔除其中的一些元素。在这种情况下,我们常常会引入因子分析的研究方法,因子分析是一种降维的方法,可以将一些相似的元素总结为共性因子,这样我们就能将多个因素减少为少数几个因素。本文会给大家介绍SPSS因子载荷值是哪个,SPSS因子载荷系数要大于多少的相关内容,感兴趣的小伙伴不容错过。
2025-05-08
SPSS清洗数据是什么意思 SPSS清洗数据步骤
在数据统计领域,如果庞杂的数据组存在较多问题,例如组别重复、存在缺失值、数据异常等复杂情况,推荐使用SPSS清洗数据的功能来剔除异常数据,这样可以避免后续数据分析的测算失误。今天,我们以这SPSS清洗数据是什么意思,SPSS清洗数据步骤两个问题为例,带大家了解一下SPSS清洗数据的相关知识。
2025-05-08
SPSS控制变量如何处理 SPSS控制变量是自变量吗
在数据分析阶段,控制变量是对因变量有影响但非研究关注主题的变量,引入控制变量可以更准确测算自变量的影响,通过解释因变量变异的额外来源而减少实验数据的随机误差。今天,我们以SPSS控制变量如何处理,SPSS控制变量是自变量吗这两个问题为例,带大家了解一下SPSS控制变量的相关知识。
2025-05-08
SPSS编码表是什么 SPSS编码表怎么导出
作为一款经典的数据分析软件,相信很多小伙伴们对SPSS都不陌生。使用SPSS能够处理庞大、复杂的数据集,大大提高我们的工作效率。接下来我来为大家介绍SPSS编码表是什么,SPSS编码表怎么导出的相关内容。
2025-05-08
SPSS协变量是什么 SPSS协变量是控制变量吗
在数据收集阶段,当采集的数据繁杂众多,我们可以使用SPSS协变量分析来测算影响重要结果的潜在因素,减少某些变量对实验数据的干扰,由此准确识别多类变量之间的因果关系。今天,我们以SPSS协变量是什么,SPSS协变量是控制变量吗这两个问题为例,带大家了解一下SPSS协变量的相关知识。
2025-05-08

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: