
发布时间:2021/08/20 15:52:59
时间序列,简单来理解,就是统计数值会随着时间的先后顺序而呈现一定趋势的数列。在经济研究中,经常会涉及到时间序列的问题,比如销售数据、GDP数据、人均收入数据等,这些数据会随着时间增长而呈现一定趋势。
时间序列包括年份、季节、月份等趋势类型,由于时间序列具有时间趋势性,因此常用作预测分析。其原理是根据数据在一定时间范围内的趋势,构建预测模型,并用作实际的预测分析。
本文将会运用SPSS构建时间序列模型,来简单预测未来GDP的量。
一、定义时间
由于时间序列涉及到时间的先后顺序,因此,我们需要先构建一个时间的变量。虽然数据已包含了年份变量,但SPSS无法直接将其识别为年份,需通过定义的方式为数据创建一个新的年份变量。
如图2所示,依次单击数据-定义日期和时间选项。
接着,在弹出的定义日期框中,选择个案的时间维度,本例选择“年”。
需注意的是,定义日期时,SPSS是从第一个个案开始赋值的,并且按照升序赋值。但本例中的第一个个案是2019年,且呈现降序年份,因此,需先进行数据的重新排序。
如图4所示,依次单击数据-个案排序。
接着,如图5所示,将年份添加到排序依据,并选择“升序”的排列顺序,即可将数据重新排序为以年份的升序排列。
重新排序数据后,再打开定义日期功能,选择个案是“年”的选项,并将第一个个案值设为“1960”。
完成以上设置后,在SPSS的输出文档会输出新生成的变量,即Year_与DATE_变量。
二、绘制序列图
在进行时间序列模型的创建前,建议先绘制序列图,观察数据的时间趋势性。
如图8所示,依次单击分析-时间序列预测-序列图。
在序列图设置面板,将GDP数值设为变量、新生成的YEAR变量设为时间轴标签。
如图10的序列图所示,GDP的量在1960-1993年之间呈现低速增长,在1994-2002年之间增长速度提升,而从2003年开始呈现高速增长,说明GDP数据呈现明显的时间序列特征。
三、小结
综上所述,在创建时间序列模型前,需先通过IBM SPSS Statistics的定义日期功能,定义时间序列模型的时间变量。另外,还建议使用时间序列中的序列图,验证数据的时间趋势。
关于后续的模型创建与结果解读,将在《SPSS中应用时间序列预测的步骤(模型与结果解读)》一文中会继续进行。
作者:泽洋
读者也喜欢这些内容:
SPSS数据分析后怎么得到图表 SPSS数据分析后的结果怎么看
在SPSS数据统计软件中,用户是可以根据需求对数据统计分析结果的格式进行设置,可以是表格文件,也可以是图表格式,一般用户为了方便查看数据统计分析结果,会选择图表格式,接下来就和大家具体讲解,SPSS数据分析后怎么得到图表,SPSS数据分析后的结果怎么看。...
阅读全文 >
spss缺失值处理方法 spss缺失值怎么设置
我们在使用SPSS处理数据时,会遇到中间的数值缺失的状况,处理数据的首要前提便是需要确保我们输入数据的准确。因此,就需要对缺失的数值进行找回,那么下面就来给大家介绍SPSS缺失值处理方法,SPSS缺失值怎么设置。...
阅读全文 >
spss置信区间上限下限解读 spss置信区间和预测区间怎么做
在使用IBM SPSS Statistics处理数据时,会使用到置信区间,置信区间是指由样板统计量所构造的总体参数的估计区间。而在统计学中,置信区间是这个参数的真实值落在测量结果周边的概率。在SPSS中,能够完成较为精确的数据分析,那么下面就来介绍SPSS置信区间上限下限解读,SPSS置信区间和预测区间怎么做。...
阅读全文 >
SPSS 调查问卷如何录入,SPSS调查问卷数据分析
SPSS是一款功能全面的数据管理软件,借助于内置的丰富算法,可完成数据分析,数据预测,数据可视化等多种功能。除工学,医学等自然科学学科,SPSS在社会学研究领域也有广泛的应用,今天以调查员工工作满意度为例,向大家介绍如何使用SPSS进行调查问卷分析,包括SPSS问卷调查录入和问卷数据分析两部分内容。...
阅读全文 >