SPSS > 使用技巧 > IBM SPSS Statistics处理多选题数据的步骤演示

IBM SPSS Statistics处理多选题数据的步骤演示

发布时间:2021-08-18 14: 30: 07

作为一款操作直观、功能强大的统计分析软件,IBM SPSS Statistics不仅广泛使用于学术研究中,更是广泛应用于市场调研行业。而在市场调研的应用中,最常涉及到的是问卷数据的处理。

对于简单的单选题,IBM SPSS Statistics处理起来与其他的数据相似,但对于多选题的话,该怎么处理呢?接下来,我们以一个实际例子讲解一下。

一、数据准备

以图1的多选题数据为例:

1. 该多选题的题目为:请问您知道以下哪些啤酒品牌?

2. 答案选项为:百威、青岛、雪花、喜力、嘉士伯、麒麟

3. 采用二分法录入,每一个选项都会录作一个变量,选中选项,其对应的变量会录入1,未选中即录入0

图1:多选题数据
图1:多选题数据

二、定义变量集

由于多选题涉及到多个变量,因此,无法通过简单的频数统计来得到所有选项的分布情况。

在这种情况下,需创建多重响应集,将所有的多选题选项集合在一起,构建新的变量集。具体的操作是,依次单击分析-多重响应-定义变量集。

图2:定义多重响应变量集
图2:定义多重响应变量集

如图3所示,定义多重响应集中包含了集合中变量、变量编码方式、名称标签等设置选项。

图3:变量设置
图3:变量设置

第一步,将所选题的选项变量都添加到“集合中的变量”。

图4:集合的变量
图4:集合的变量

第二步,在“变量编码方式”中选择“二分法”,并将其计数值设为1。该设置表示该集合中的变量采用二分法录入,当变量的数值为1时就计入一个计数。

第三步,在名称中输入新创建的多重响应集为Q2_TTL,在标签中输入多选题的题目。

第四步,单击添加按钮。

图5:定义集合的变量
图5:定义集合的变量

完成以上设置后,就能得到一个新的多重响应集$Q2_TTL。需注意的是,该多重响应集不会在SPSS数据集中出现,但会在多重响应运算中出现。

图6:完成定义
图6:完成定义

三、多重响集分析

对于新创建的多重响应集$Q2_TTL,可使用多重响应的频率与交叉表进行分析。

1. 频率分析

多重响应频率分析,即对多重响应集的频率分析。

图7:多重响应频率
图7:多重响应频率

其操作很简单,如图8所示,将多重响应集添加到表项目。

图8:变量设置
图8:变量设置

即可得到该多重响应集的频率分析,即不同啤酒品牌的认知个案数与占比情况。

图9:频率分析
图9:频率分析

2. 交叉表分析

多重响应的交叉表可供进行多重响应集与其他变量的交叉分析,但需注意的是,进行交叉表分析的变量需定义为定量变量。

比如在图10的数据中,如果希望获得性别与多重响应集的交叉表分析,需先将性别转换为定量变量。

图10:添加性别变量
图10:添加性别变量

完成数据的转换后,打开多重响应交叉表设置,将多重响应集$Q2_TTL添加为行,性别添加为列。

此时,注意到性别变量出现了“(??)”的符号,这是因为当前性别是定量变量,需进行范围的定义。

图11:多重响应交叉表
图11:多重响应交叉表

如图12所示,单击定义范围,将其最小值设为0,最大值设为1。

图12:定义范围
图12:定义范围

完成以上设置后,即可得到不同性别对不同啤酒品牌的认知频率分析。

图13:交叉表分析
图13:交叉表分析

四、小结

综上所述,在SPSS处理问卷多选题时,如果需要得到不同选项的整体频率分析,需先进行多重响应集的定义,将所有的多选题选项集合为多重响应集,再进行频率与交叉表的分析。

作者:泽洋

展开阅读全文

标签:SPSS

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS因子和协变量的区别和联系 SPSS因子和协变量怎么选
在SPSS数据统计分析方法中,回归分析是比较常用到的数据分析方法,其中多元 Logistic 回归分析是较为复杂的一种分析方法,因为其中包含了因子、协变量、因变量、自变量等多个变量,在进行分析的时候,需要区分好这些变量,接下来重点给大家讲解,SPSS因子和协变量的区别和联系,SPSS因子和协变量怎么选。
2025-05-08
SPSS因子载荷值是哪个 SPSS因子载荷系数要大于多少
如果我们研究的问题里面有很多的影响因素,而且每个因素都好像很重要,无法剔除其中的一些元素。在这种情况下,我们常常会引入因子分析的研究方法,因子分析是一种降维的方法,可以将一些相似的元素总结为共性因子,这样我们就能将多个因素减少为少数几个因素。本文会给大家介绍SPSS因子载荷值是哪个,SPSS因子载荷系数要大于多少的相关内容,感兴趣的小伙伴不容错过。
2025-05-08
SPSS清洗数据是什么意思 SPSS清洗数据步骤
在数据统计领域,如果庞杂的数据组存在较多问题,例如组别重复、存在缺失值、数据异常等复杂情况,推荐使用SPSS清洗数据的功能来剔除异常数据,这样可以避免后续数据分析的测算失误。今天,我们以这SPSS清洗数据是什么意思,SPSS清洗数据步骤两个问题为例,带大家了解一下SPSS清洗数据的相关知识。
2025-05-08
SPSS控制变量如何处理 SPSS控制变量是自变量吗
在数据分析阶段,控制变量是对因变量有影响但非研究关注主题的变量,引入控制变量可以更准确测算自变量的影响,通过解释因变量变异的额外来源而减少实验数据的随机误差。今天,我们以SPSS控制变量如何处理,SPSS控制变量是自变量吗这两个问题为例,带大家了解一下SPSS控制变量的相关知识。
2025-05-08
SPSS编码表是什么 SPSS编码表怎么导出
作为一款经典的数据分析软件,相信很多小伙伴们对SPSS都不陌生。使用SPSS能够处理庞大、复杂的数据集,大大提高我们的工作效率。接下来我来为大家介绍SPSS编码表是什么,SPSS编码表怎么导出的相关内容。
2025-05-08
SPSS协变量是什么 SPSS协变量是控制变量吗
在数据收集阶段,当采集的数据繁杂众多,我们可以使用SPSS协变量分析来测算影响重要结果的潜在因素,减少某些变量对实验数据的干扰,由此准确识别多类变量之间的因果关系。今天,我们以SPSS协变量是什么,SPSS协变量是控制变量吗这两个问题为例,带大家了解一下SPSS协变量的相关知识。
2025-05-08

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: