IBM SPSS Statistics 中文网站 > 使用技巧 > 在SPSS中进行斯皮尔曼相关性分析

在SPSS中进行斯皮尔曼相关性分析

发布时间:2021/06/17 16:55:53

当我们要研究某指标与某结果之间是否存在一定的相关性,就需要进行相关性分析,现如今比较常用的相关性分析有斯皮尔曼相关性分析、皮尔逊相关性分析,两者所适用的范围不同。

今天我们就使用IBM SPSS Statistic软件,来讲讲斯皮尔曼相关性分析法的假设检验和使用方式。

一、单调性检测

上面我们提到了斯皮尔曼相关性分析和皮尔逊相关性分析使用的范围是不同的,其中,斯皮尔曼相关性分析适用于对存在单调性关系的变量进行检测;而皮尔逊相关性分析适用于对正态分布的变量进行检测。所以下面我们首先需要检测数据变量之间是否存在一定的单调性。

下图1是准备好要演示的数据,第一列表示人员久坐的时间,第二列表示人员的胆固醇含量,今天我们要研究的就是久坐是否与胆固醇含量之间有一点的关系。

图1:相关性分析数据

点击【图形】菜单,选择【图形构建器】,然后点击下方的“散点图/点图”选项,双击第一个散点图,然后将左侧列表的“久坐时间”拖动到X轴上,将“胆固醇”拖动到Y轴上,具体步骤见图2。

图2:图形构建器

点击“确定”后,会生成下图3所示的散点图,我们从图3可以看出,久坐时间与胆固醇含量存在着一定的单调关系,且它们之间的关系是正向的,久坐时间越长,胆固醇含量越高。

图3:绘制的散点图

二、斯皮尔曼相关性分析

完成单调性的假设检验以后,我们接下来就可以使用斯皮尔曼来分析这两个指标之间的相关性了。第一步:点击【分析】--【相关】--【双变量】。

图4:双变量分析

在变量中选择我们的两个指标变量,然后在相关系数中勾选“斯皮尔曼”,显著性检验勾选“双尾”,同时勾选“标记显著性相关性”,最后点击“确定”。

图5:双变量相关性

三、结果分析

最终的相关性分析结果如图6,我们看第一行的相关系数指标,可以看到,它们之间的相关系数为0.793,这说明它们之间是存在一定的正向相关性。

对于相关系数来说,0表示两者之间没有相关性,-1表示负相关性,1表示正相关性,越接近于-1或者1,则相关性越强。

图6:相关性结果

这就是在IBM SPSS Statistics软件中使用斯皮尔曼相关性分析法,进行假设检验和双变量相关性分析的全部教程,从散点图我们也可以直观地论证出最终结果的准确性,希望本教程能给大家在相关性分析的工作中带来帮助。

作者署名:包纸

标签:spss

读者也访问过这里:
SPSS Statistics
一款功能强大的数据统计分析工具
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
SPSS线性回归如何预测 SPSS怎么得到预测值
SPSS线性回归预测的主要步骤是通过线性回归分析构建模型,得出线性回归方程,然后对整体效果进行F检验和T检验,证实回归方程的正确性。最后,给定一个自变量值,进行点预测和区间预测。下面,小编具体来介绍一下SPSS线性回归如何预测,SPSS怎么得到预测值的方法。
2022-01-10

咨询热线

在线咨询

限时折扣