SPSS > 使用技巧 > 在SPSS中进行斯皮尔曼相关性分析

在SPSS中进行斯皮尔曼相关性分析

发布时间:2021-06-17 16: 55: 53

当我们要研究某指标与某结果之间是否存在一定的相关性,就需要进行相关性分析,现如今比较常用的相关性分析有斯皮尔曼相关性分析、皮尔逊相关性分析,两者所适用的范围不同。

今天我们就使用IBM SPSS Statistic软件,来讲讲斯皮尔曼相关性分析法的假设检验和使用方式。

一、单调性检测

上面我们提到了斯皮尔曼相关性分析和皮尔逊相关性分析使用的范围是不同的,其中,斯皮尔曼相关性分析适用于对存在单调性关系的变量进行检测;而皮尔逊相关性分析适用于对正态分布的变量进行检测。所以下面我们首先需要检测数据变量之间是否存在一定的单调性。

下图1是准备好要演示的数据,第一列表示人员久坐的时间,第二列表示人员的胆固醇含量,今天我们要研究的就是久坐是否与胆固醇含量之间有一点的关系。

图1:相关性分析数据

点击【图形】菜单,选择【图形构建器】,然后点击下方的“散点图/点图”选项,双击第一个散点图,然后将左侧列表的“久坐时间”拖动到X轴上,将“胆固醇”拖动到Y轴上,具体步骤见图2。

图2:图形构建器

点击“确定”后,会生成下图3所示的散点图,我们从图3可以看出,久坐时间与胆固醇含量存在着一定的单调关系,且它们之间的关系是正向的,久坐时间越长,胆固醇含量越高。

图3:绘制的散点图

二、斯皮尔曼相关性分析

完成单调性的假设检验以后,我们接下来就可以使用斯皮尔曼来分析这两个指标之间的相关性了。第一步:点击【分析】--【相关】--【双变量】。

图4:双变量分析

在变量中选择我们的两个指标变量,然后在相关系数中勾选“斯皮尔曼”,显著性检验勾选“双尾”,同时勾选“标记显著性相关性”,最后点击“确定”。

图5:双变量相关性

三、结果分析

最终的相关性分析结果如图6,我们看第一行的相关系数指标,可以看到,它们之间的相关系数为0.793,这说明它们之间是存在一定的正向相关性。

对于相关系数来说,0表示两者之间没有相关性,-1表示负相关性,1表示正相关性,越接近于-1或者1,则相关性越强。

图6:相关性结果

这就是在IBM SPSS Statistics软件中使用斯皮尔曼相关性分析法,进行假设检验和双变量相关性分析的全部教程,从散点图我们也可以直观地论证出最终结果的准确性,希望本教程能给大家在相关性分析的工作中带来帮助。

作者署名:包纸

展开阅读全文

标签:spssSPSS数据相关性分析

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS非参数检验不显示组别怎么办 SPSS非参数检验结果怎么解读
在数据分析领域,研究者通常要对非正态分布的数据进行非参数检验,这样不仅可以判断不满足正态分布的变量之间是否存在关系,还能够清楚了解数据的秩次信息。今天,我们以SPSS非参数检验不显示组别怎么办,SPSS非参数检验结果怎么解读这两个问题为例,带大家了解一下SPSS非参数检验的相关知识。
2025-06-12
SPSS标准化残差散点图怎么画 SPSS标准化残差大于3怎么办
在针对因变量为数值型变量展开建模分析的时候,研究者可以使用SPSS线性回归的残差分析检验变量的正态性特征,例如以残差等方差性判断回归残差的方差齐性,进而有助于优化和改进线性数据建模。今天,我们SPSS标准化残差散点图怎么画,SPSS标准化残差大于3怎么办这两个问题为例,带大家了解一下SPSS标准化残差散点图的相关知识。
2025-06-12
SPSS标准化残差图怎么做 SPSS标准化残差图解读
在数据分析领域,如果研究者想对线性数据集的正态性进行分析,推荐使用SPSS残差图绘制的方法来高效掌握采集的数据信息,以便了解数据模型的拟合情况和误差分布。今天,我们以SPSS标准化残差图怎么做,SPSS标准化残差图解读这两个问题为例,带大家了解一下SPSS标准化残差的相关知识。
2025-06-11
SPSS中如何将文字表达改为数字 SPSS怎么把字符串改成数字格式
在数据分析领域,如果想要对多属性或多选项的变量进行分析,研究者需要对一些文字变量进行赋值来将字符串改为数字格式,便于后续的问卷数据统计和测量。今天,我们以SPSS中如何将文字表达改为数字,SPSS怎么把字符串改成数字格式这两个问题为例,带大家了解一下SPSS字符赋值的相关知识。
2025-06-10
SPSS数据透视表如何创建 SPSS数据透视表字段调整步骤
在数据分析领域,SPSS的功能设置不仅适用于分析繁杂数据组之间的相关关系,还能够计算各类数值并且制作出清晰明确的图表,例如数据透视表、交互作用图等。今天,我们以SPSS数据透视表如何创建,SPSS数据透视表字段调整步骤这两个问题为例,带大家了解一下SPSS透视表设置的相关知识。
2025-06-10
SPSS均值比较怎么操作 SPSS均值比较参数设置流程
在数据分析领域,如果研究者想要判断两组或多组数据在某一方面是否存在明显差异,可以使用SPSS的t检验、卡方检验等方法进行测量,不仅能得到清晰明确的数据表格查看各类占比情况,还能够据此知晓详细的参数设置情况。今天,我们以SPSS均值比较怎么操作,SPSS均值比较参数设置流程这两个问题为例,带大家了解一下SPSS均值比较的知识。
2025-06-06

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: