IBM SPSS Statistics 中文网站 > 使用技巧 > IBM SPSS Statistics中如何对数据进行综合评价排名

IBM SPSS Statistics中如何对数据进行综合评价排名

发布时间:2021/07/08 10:48:59

我们在对对象进行评价排名时,需要从多个不同的角度进行客观评价,而评价的角度越多,进行综合排名的难度就越高,不同的评价方法得出来的结论也会有所不同。

下面我们使用IBM SPSS Statistics软件,演示使用两种不同的对象评价排名方法,针对各高校的六组不同指标,对它们进行一个综合排名。

一、个案排秩加法排名

准备数据如下图1所示,包含了高校校名和他们对应p1到p6的六个评价指标数据。

图1:演示数据

首先,点击【转换】--【个案排秩】,进入个案排秩界面。然后将六个指标变量填入到“变量”框中,再将秩1赋予最大值,点击“确定”。

图2:个案排秩

完成个案排秩之后,SPSS会帮我们生成六个新的变量,随后我们点击【转换】--【计算变量】,将生成的六个新变量进行相加计算,生成一个新的目标变量,名为“score”,如图3。

图3:相加计算

此时生成的score新变量如下图4所示,我们右键点击它,选择“升序排序”,就可以看到个案排秩加法得出的新的排名,其中,清华大学排在第一位,北京大学排在第二位。

图4:得出的具体排名

二、主成分分析排名

上述方法充分用到了每一个指标,但是实际上可能每个指标的侧重点、重要程度都是不同的,因此我们也可以考虑主成分分析法,将六个指标压缩为更少的指标,再进行综合排名。

点击【分析】--【降维】--【因子】,进行因子分析,将我们需要的六个变量拖拽到“变量”框中,其它保持默认选项,并在“得分”按钮中,勾选“保存为变量”,最后点击确定按钮。

图5:因子分析

因子分析结果见图6,我们从“公因子方差”表可以看到p6指标的指标抽取成分较低;从“总方差解释”表中可以看出SPSS帮我们提取出一个指标,该指标占了全部指标成分的77.363%,从“成分矩阵”中我们就可以得出,这个指标主要是包含了p1到p5的五个指标。

图6:因子分析结果

下图7中的“FAC1_1”就是提取出的指标,我们将它进行“降序排序”,就可以得出我们的一个综合排名。

图7:提取出的成分

本文通过使用“个案排秩加法”和“主成分分析法”,利用高校提供的六个指标数据,进行了高校的整体排名。更多关于SPSS的教程,大家可以到IBM SPSS Statistics中文网站上进行查看。 

作者署名:包纸

标签:SPSS数据分析

读者也访问过这里:
SPSS Statistics
一款功能强大的数据统计分析工具
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
SPSS线性回归如何预测 SPSS怎么得到预测值
SPSS线性回归预测的主要步骤是通过线性回归分析构建模型,得出线性回归方程,然后对整体效果进行F检验和T检验,证实回归方程的正确性。最后,给定一个自变量值,进行点预测和区间预测。下面,小编具体来介绍一下SPSS线性回归如何预测,SPSS怎么得到预测值的方法。
2022-01-10

咨询热线

在线咨询

限时折扣