IBM SPSS Statistics 中文网站 > 使用技巧 > SPSS实现多层感知器神经网络

SPSS实现多层感知器神经网络

发布时间:2021-06-04 11: 01: 12

在上文《用SPSS的评分向导功能快速得出模型预测结果》中我们说到,评分向导功能可通过导入的模型快速预测模型结果,而这一功能的使用模型较常使用神经网络模型。

神经网络模型也是近些年大火的人工智能行业基础算法,SPSS软件中支持训练出多层感知器神经网络模型,今天我们一起来看看它是如何通过该专业统计分析软件训练出来的。

一、多层感知器总体介绍

我们准备好训练集数据后,点击【分析】菜单中的【神经网络】,选择第一项【多层感知器】,开始训练神经网络模型。

图1:多层感知器

多层感知器分为8个选项菜单,“变量”和“分区”菜单是训练前的数据准备;“体系结构”菜单用于定义模型的各项参数和优化方法;“训练”菜单用于调整模型的训练参数,如训练批次;“输出”、“保存”和“导出”菜单用于设置模型输出和保存的内容;“选项”菜单用于设置模型除上述步骤外的其他设置项,如模型最长训练时间。

图2:八大菜单

二、操作步骤

第一步:我们先在【变量】菜单中,填入模型的因变量、因子和协变量,因为各个协变量定义标准都不同,因此我们还需对其标准化,如图3。

图3:变量菜单设置

第二步:接下来在“分区”菜单中,将数据按照默认7:3的比例,分为训练集和验证集,训练集用于训练模型,验证集用于验证模型结果,反向优化模型参数,一般来说,训练集数量大于验证集。

图4:分为训练集和验证集

第三步:定义神经网络模型结构,这一步非常重要,默认勾选的是“体系结构自动选择”,我们不采取默认方式,而是勾选“定制体系结构”,然后修改其中的隐藏层数、隐藏层激活函数、输出层激活函数、隐藏层每一层网络的单元数。

一开始上述参数根据过往调参经验设定即可,后续通过模型的准确率,我们需要不断调整上述参数,最终调整到合适的参数,得到准确率较满意的神经网络模型为最终模型。

图5:设定模型参数

第四步:在“训练”菜单中,我们需设置模型训练的批次、优化算法和其他训练选项,如初始学习率。以上训练参数都会在一定程度上影响模型的训练准确率和训练速度,设定太大则训练时间太长,太小则模型拟合的准确率不够高,因此也属于经验参数,需要反复通过训练模型来逐步确定。

图6:设定训练参数

第五步:设定我们要输出的内容,如ROC曲线、神经网络图、分类结果等,设定的内容最终会在模型训练后以图表形式展示出来。完成设置后,点击“确定”按钮,我们开始来训练模型。

图7:设定输出参数

三、模型结果

等待部分时间后,模型训练完成,训练完成后的神经网络模型如下图8所示。

图8:神经网络图

我们在网络信息表格中,就可以看到该神经网络的具体参数,如使用的激活函数、每个隐藏层的单元数等等。

图9:网络信息

训练神经网络是一项非常花费时间的工作,不仅是因为它训练时间长、而且也因为它需要在训练过程中进行反复调参,使模型向更好的结果进行调整拟合,当然神经网络模型也能实现非常强大的功能,逐渐在我们的生活中占据更高的比重。这就是本文关于SPSS软件训练神经网络的简单教程,更多关于IBM SPSS Statistics使用教学,大家可到IBM SPSS Statistics中文网站上查看。 

作者署名:包纸

展开阅读全文

标签:spss神经网络

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
spss怎么做逐步回归分析 逐步回归分析spss结果解读
spss怎么做逐步回归分析?逐步回归分析是多元线性回归分析的一种,可通过spss回归分析中的“步进”法来做逐步回归分析。本文会运用例子演示逐步回归分析步骤,并进行逐步回归分析spss结果解读。
2022-05-12
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
最新文章
spss赋值后为什么显示不出来 spss赋值后为什么空白不显示
在现代数据分析中,SPSS(统计产品与服务解决方案)被广泛应用于社会科学、市场研究和健康科学等领域。尽管其功能强大,但在实际操作中,用户可能会遇到一些问题,例如赋值后数据不显示或空白。本文将探讨这些问题,并提供解决方案。
2024-06-14
spss异常值设置在哪里操作 spss异常值筛选后如何处理
在数据分析过程中,异常值是一个常见的问题,它可能会对分析结果产生影响。因此,正确处理异常值是非常重要的。本文将探讨SPSS如何处理异常值的方法。关于SPSS异常值设置在哪里操作,SPSS异常值筛选后如何处理的内容,本文向大家作简单介绍。
2024-05-22
spss去除无效数据方法 spss去除极端值方法
统计学是一门旨在收集、分析和解释数据的学科。在统计学中,数据的准确性和有效性至关重要。然而,有时候我们会遇到无效数据,这些数据可能是错误的、缺失的或者不完整的,它们会对统计结果产生严重的影响。使用SPSS对数据进行统计时,也常常会面对这些问题,关于SPSS去除无效数据方法,SPSS去除极端值方法的内容,本文向大家作简单介绍。
2024-05-08
spss异常值处理办法 spss异常值检验步骤
SPSS异常值检查是数据分析中一个非常重要的步骤。异常值指的是数据集中与其他观测值明显不同的数值。这些异常值可能会对统计分析结果产生影响,使用SPSS进行统计分析前,要对数据进行简单分析,例如查看有无缺失值,进行异常值检验等。有关SPSS异常值处理办法,SPSS异常值检验步骤的内容,本文向大家作简单介绍。
2024-04-24
spss筛选变量不能共线 spss筛选出没有缺失值的样本方法
SPSS是一种强大的统计分析软件,广泛应用于各种研究领域。在进行数据分析时,研究人员经常会遇到共线性问题。共线性是指自变量之间存在高度相关性的情况,这可能会导致模型不稳定、参数估计不准确甚至无法得出有效的结论。因此,共线性诊断和筛选变量在SPSS中变得尤为重要。有关SPSS筛选变量不能共线,SPSS筛选出没有缺失值的样本方法的内容,本文向大家作简单介绍。
2024-04-17
spss筛选功能在什么地方 spss筛选怎么做
SPSS软件是一款被广泛应用于数据分析和统计学习领域的工具。在数据处理过程中,筛选是一个非常重要的步骤,它可以帮助用户快速地找到所需的数据并进行进一步的分析。SPSS软件提供了强大的筛选功能,使用户能够轻松地筛选出符合特定条件的数据,从而提高数据处理的效率和准确性。SPSS筛选功能在什么地方,SPSS筛选怎么做,本文向大家作简单介绍。
2024-04-10

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: