SPSS > 使用技巧 > SPSS逐步回归分析步骤

SPSS逐步回归分析步骤

发布时间:2022-04-15 10: 43: 22

 在实际的生产生活中,常常会遇到这样的状况,多种催化剂共同使用,化学反应效率提高,但是不确定哪些催化剂起主要作用。一个地区的居民收入受到多种因素的影响,但是不能确定哪些因素起主要作用。在这种情况下,设计实验进行验证,就需要引入大量的影响因子,大大限制效率的提高。如果借助统计学中的逐步回归统计方法,就能大大节省实验成本。

 SPSS软件内置了逐步回归分析功能,只需将初步试验数据录入,选择合适的分析方法,SPSS就能提供影响因子的回归方程,同时剔除对结果影响不大的因素,显著提高工作效率。

 SPSS实现逐步回归的基本步骤是,将变量一个一个引入,对引入的变量逐个进行检验,逐步剔除影响最不显著的自变量,直至将全部数据计算完毕,构造更优的回归方程。

 1.数据录入

 例:对于4种催化剂的催化效率进行了研究,得到了产率的实验数据。

 打开SPSS软件,录入实验数据,如图1所示。前4列为催化剂用量,第5列为产率。

 

图1录入数据
图1录入数据

 在图2所示界面,对变量属性进行设置。

 

图2变量属性设置
图2变量属性设置

 2.进行逐步回归分析

 点击分析,回归,线性,将产率指定为因变量,将四种催化剂用量指定为自变量,方法栏选中“逐步”。

 单击选项按钮,在“使用F的概率”中的进入输入0.1,删除输入0.11。

 表示当候选变量中最大F值的P值小于或等于0.1时,引入相关变量。在引入方程的变量中,最小F值的P值大于或等于0.1时,则剔除该变量。

 点击确定进行逐步回归分析。

 

图3逐步回归分析过程
图3逐步回归分析过程

 3.逐步分析结果解读

 在逐步分析结果中,需要关注以下三个方面:

 首先,排除的变量,催化剂A和催化剂C,其显著性分别为0.724,0.676,远大于0.05,接受A,C用量与产率无关的假设,将这两个变量进行剔除。

 在模型摘要中,引入催化剂B和D,R值为1,认为B,D和产率之间存在强线性相关关系,接受B,D为产率的自变量。

 在系数表格中,未标准化系数催化剂D为2,催化剂B为1,认为产率=2*D+B,逐步线性回归分析完毕。

 

图4结果解读
图4结果解读

 逐步线性回归分析对于优化实验条件具有重要实用价值,如果人工进行统计学计算则相当繁琐,借助SPSS可以迅速完成统计分析,大大提高工作效率。

 

 作者:莱阳黎曼 

展开阅读全文

标签:回归分析二元回归分析有序回归分析非线性回归回归方程SPSS逐步回归分析SPSS逐步回归

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS亚组分析的注意事项 SPSS亚组分析结果解读
对于经常与数据分析打交道的小伙伴来说,想必对亚组分析这个概念应该不会感到陌生。亚组分析是用来检测异质性结果的方法之一,亚组分析的数据结果分为确证性、支持性和探索性三类。而我们在进行亚组分析时,可以借助数据分析软件SPSS的帮助,它一方面可以帮助我们得到亚组分析的数据结果,还能够把这些数据分析结果以报告形成呈现出来。接下来给大家介绍SPSS亚组分析的注意事项, SPSS亚组分析结果解读的具体内容。
2026-01-14
SPSS卡方检验样本不满足要求怎么办 卡方检验SPSS结果都小于0.5说明了什么
在数据分析的过程中,卡方样本检验是常见的一种统计方式。卡方检验主要用来检验数据样本之间的离散程度,进而判断不同数据之间的偏差值,如果数据样本在统计的时候不符合实际的统计需求,就可能导致卡方检验不满足要求。所以我们需要在统计的过程中对数据样本和统计方法进行调整,这样能够规避数据样本检验带来的结果偏差风险。下面以SPSS为例,给大家介绍SPSS卡方检验样本不满足要求怎么办,卡方检验SPSS结果都小于0.5说明了什么的具体内容。
2026-01-14
SPSS事后比较怎样进行 SPSS事后比较多重校正应如何设置
在数据分析的过程中,经常会在数据分析之后对它进行事后比较的操作。事后比较可以在方差分析的基础之上帮助我们快速找到具体存在差异的数据组。简单来说,大家可以把方差分析理解为起到了一个提示作用,告诉了我们数据样本中的均值并不相等且存在差异,但是如果想要找到具体的差异点在哪里,就需要用到事后比较了。而在进行事后比较的过程中,还会遇到设置多重校正的情况。下面以SPSS为例,给大家介绍SPSS事后比较怎样进行,SPSS事后比较多重校正应如何设置。
2026-01-14
SPSS怎么查看缺失值分布 SPSS数据缺失严重怎么处理更合理
我们在对数据样本进行统计时,经常会遇到排查缺失值的情况,缺失值指数据样本分析中出现的数值丢失情况。如果数据样本中存在的缺失值数量较多的情况,可能会导致数据分析的结果出现偏差。SPSS作为一款专业的数据分析软件,许多用户都会用它来进行数据分析,下面我们以SPSS为例,向大家介绍SPSS怎么查看缺失值分布,SPSS数据缺失严重怎么处理更合理的具体内容。
2026-01-14
SPSS变量类型怎么修改 SPSS变量标签修改后分析报错怎么办
在数据分析这个领域中,我们经常会面临着修改数据变量类型的情况。因为在一组数据变量中会存在着多种不同的变量类型(自变量、因变量、定类变量、定序变量等),这些变量类型在数据样本中担任着不同的角色,在样本分析中也有着不同的作用。下面就以SPSS数据分析软件为例,给大家介绍SPSS变量类型怎么修改,SPSS变量标签修改后分析报错怎么办的具体内容。
2026-01-14
SPSS如何导出分析报告 SPSS报表内容丢失怎么修复
数据分析报告作为承载着数据分析结果的重要内容,既起到了数据样本分析总结的作用,又可以将这部分数据分析结果应用到其他的领域和研究当中(可以作为重要的数据样本参考)。所以导出数据分析报告和修复丢失的数据就成为了数据分析中的一个重要环节,下面以SPSS为例,向大家介绍SPSS如何导出分析报告,SPSS报表内容丢失怎么修复的具体内容。
2026-01-14

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: