IBM SPSS Statistics 中文网站 > 使用技巧 > SPSS逐步回归分析步骤

SPSS逐步回归分析步骤

发布时间:2022/04/15 10:43:22

 在实际的生产生活中,常常会遇到这样的状况,多种催化剂共同使用,化学反应效率提高,但是不确定哪些催化剂起主要作用。一个地区的居民收入受到多种因素的影响,但是不能确定哪些因素起主要作用。在这种情况下,设计实验进行验证,就需要引入大量的影响因子,大大限制效率的提高。如果借助统计学中的逐步回归统计方法,就能大大节省实验成本。

 SPSS软件内置了逐步回归分析功能,只需将初步试验数据录入,选择合适的分析方法,SPSS就能提供影响因子的回归方程,同时剔除对结果影响不大的因素,显著提高工作效率。

 SPSS实现逐步回归的基本步骤是,将变量一个一个引入,对引入的变量逐个进行检验,逐步剔除影响最不显著的自变量,直至将全部数据计算完毕,构造更优的回归方程。

 1.数据录入

 例:对于4种催化剂的催化效率进行了研究,得到了产率的实验数据。

 打开SPSS软件,录入实验数据,如图1所示。前4列为催化剂用量,第5列为产率。

 

图1录入数据
图1录入数据

 在图2所示界面,对变量属性进行设置。

 

图2变量属性设置
图2变量属性设置

 2.进行逐步回归分析

 点击分析,回归,线性,将产率指定为因变量,将四种催化剂用量指定为自变量,方法栏选中“逐步”。

 单击选项按钮,在“使用F的概率”中的进入输入0.1,删除输入0.11。

 表示当候选变量中最大F值的P值小于或等于0.1时,引入相关变量。在引入方程的变量中,最小F值的P值大于或等于0.1时,则剔除该变量。

 点击确定进行逐步回归分析。

 

图3逐步回归分析过程
图3逐步回归分析过程

 3.逐步分析结果解读

 在逐步分析结果中,需要关注以下三个方面:

 首先,排除的变量,催化剂A和催化剂C,其显著性分别为0.724,0.676,远大于0.05,接受A,C用量与产率无关的假设,将这两个变量进行剔除。

 在模型摘要中,引入催化剂B和D,R值为1,认为B,D和产率之间存在强线性相关关系,接受B,D为产率的自变量。

 在系数表格中,未标准化系数催化剂D为2,催化剂B为1,认为产率=2*D+B,逐步线性回归分析完毕。

 

图4结果解读
图4结果解读

 逐步线性回归分析对于优化实验条件具有重要实用价值,如果人工进行统计学计算则相当繁琐,借助SPSS可以迅速完成统计分析,大大提高工作效率。

 

 作者:莱阳黎曼 

标签:回归分析二元回归分析有序回归分析非线性回归回归方程

读者也访问过这里:
SPSS Statistics
一款功能强大的数据统计分析工具
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
SPSS线性回归如何预测 SPSS怎么得到预测值
SPSS线性回归预测的主要步骤是通过线性回归分析构建模型,得出线性回归方程,然后对整体效果进行F检验和T检验,证实回归方程的正确性。最后,给定一个自变量值,进行点预测和区间预测。下面,小编具体来介绍一下SPSS线性回归如何预测,SPSS怎么得到预测值的方法。
2022-01-10

咨询热线

在线咨询

限时折扣