发布时间:2022-04-15 10: 43: 22
在实际的生产生活中,常常会遇到这样的状况,多种催化剂共同使用,化学反应效率提高,但是不确定哪些催化剂起主要作用。一个地区的居民收入受到多种因素的影响,但是不能确定哪些因素起主要作用。在这种情况下,设计实验进行验证,就需要引入大量的影响因子,大大限制效率的提高。如果借助统计学中的逐步回归统计方法,就能大大节省实验成本。
SPSS软件内置了逐步回归分析功能,只需将初步试验数据录入,选择合适的分析方法,SPSS就能提供影响因子的回归方程,同时剔除对结果影响不大的因素,显著提高工作效率。
SPSS实现逐步回归的基本步骤是,将变量一个一个引入,对引入的变量逐个进行检验,逐步剔除影响最不显著的自变量,直至将全部数据计算完毕,构造更优的回归方程。
1.数据录入
例:对于4种催化剂的催化效率进行了研究,得到了产率的实验数据。
打开SPSS软件,录入实验数据,如图1所示。前4列为催化剂用量,第5列为产率。

在图2所示界面,对变量属性进行设置。

2.进行逐步回归分析
点击分析,回归,线性,将产率指定为因变量,将四种催化剂用量指定为自变量,方法栏选中“逐步”。
单击选项按钮,在“使用F的概率”中的进入输入0.1,删除输入0.11。
表示当候选变量中最大F值的P值小于或等于0.1时,引入相关变量。在引入方程的变量中,最小F值的P值大于或等于0.1时,则剔除该变量。
点击确定进行逐步回归分析。

3.逐步分析结果解读
在逐步分析结果中,需要关注以下三个方面:
首先,排除的变量,催化剂A和催化剂C,其显著性分别为0.724,0.676,远大于0.05,接受A,C用量与产率无关的假设,将这两个变量进行剔除。
在模型摘要中,引入催化剂B和D,R值为1,认为B,D和产率之间存在强线性相关关系,接受B,D为产率的自变量。
在系数表格中,未标准化系数催化剂D为2,催化剂B为1,认为产率=2*D+B,逐步线性回归分析完毕。

逐步线性回归分析对于优化实验条件具有重要实用价值,如果人工进行统计学计算则相当繁琐,借助SPSS可以迅速完成统计分析,大大提高工作效率。
作者:莱阳黎曼
展开阅读全文
︾
微信公众号
读者也喜欢这些内容:
SPSS显著性小于0.001的意义 SPSS显著性大于0.05怎么办
在使用SPSS软件进行数据分析工作的过程中,得到的显著性水平分析结果具有极为重要的作用。它能够帮助我们衡量变量之间是否存在真实的关联,或者不同组别数据之间是否存在实质性的差异。今天我们就一起来探讨关于SPSS显著性小于0.001的意义,SPSS显著性大于0.05怎么办的问题。...
阅读全文 >
SPSS图表怎么显示数据标签 SPSS图表构建器怎么用
图表是传达信息的重要工具,而数据标签是图表显示信息的关键元素。SPSS作为广泛使用的统计分析软件,不仅可以轻松绘制各种图表,还可以帮助我们精确标注数值、突出关键信息,使图表更清晰易懂。下面我们一起来学习关于在SPSS中图表怎么显示数据标签,SPSS图表构建器怎么用的内容。...
阅读全文 >
SPSS标准化残差图怎么做 SPSS标准化残差图解读
在数据分析领域,如果研究者想对线性数据集的正态性进行分析,推荐使用SPSS残差图绘制的方法来高效掌握采集的数据信息,以便了解数据模型的拟合情况和误差分布。今天,我们以SPSS标准化残差图怎么做,SPSS标准化残差图解读这两个问题为例,带大家了解一下SPSS标准化残差的相关知识。...
阅读全文 >
SPSS编码表是什么 SPSS编码表怎么导出
作为一款经典的数据分析软件,相信很多小伙伴们对SPSS都不陌生。使用SPSS能够处理庞大、复杂的数据集,大大提高我们的工作效率。接下来我来为大家介绍SPSS编码表是什么,SPSS编码表怎么导出的相关内容。...
阅读全文 >