IBM SPSS Statistics 中文网站 > 使用技巧 > SPSS逐步回归分析步骤

SPSS逐步回归分析步骤

发布时间:2022-04-15 10: 43: 22

 在实际的生产生活中,常常会遇到这样的状况,多种催化剂共同使用,化学反应效率提高,但是不确定哪些催化剂起主要作用。一个地区的居民收入受到多种因素的影响,但是不能确定哪些因素起主要作用。在这种情况下,设计实验进行验证,就需要引入大量的影响因子,大大限制效率的提高。如果借助统计学中的逐步回归统计方法,就能大大节省实验成本。

 SPSS软件内置了逐步回归分析功能,只需将初步试验数据录入,选择合适的分析方法,SPSS就能提供影响因子的回归方程,同时剔除对结果影响不大的因素,显著提高工作效率。

 SPSS实现逐步回归的基本步骤是,将变量一个一个引入,对引入的变量逐个进行检验,逐步剔除影响最不显著的自变量,直至将全部数据计算完毕,构造更优的回归方程。

 1.数据录入

 例:对于4种催化剂的催化效率进行了研究,得到了产率的实验数据。

 打开SPSS软件,录入实验数据,如图1所示。前4列为催化剂用量,第5列为产率。

 

图1录入数据
图1录入数据

 在图2所示界面,对变量属性进行设置。

 

图2变量属性设置
图2变量属性设置

 2.进行逐步回归分析

 点击分析,回归,线性,将产率指定为因变量,将四种催化剂用量指定为自变量,方法栏选中“逐步”。

 单击选项按钮,在“使用F的概率”中的进入输入0.1,删除输入0.11。

 表示当候选变量中最大F值的P值小于或等于0.1时,引入相关变量。在引入方程的变量中,最小F值的P值大于或等于0.1时,则剔除该变量。

 点击确定进行逐步回归分析。

 

图3逐步回归分析过程
图3逐步回归分析过程

 3.逐步分析结果解读

 在逐步分析结果中,需要关注以下三个方面:

 首先,排除的变量,催化剂A和催化剂C,其显著性分别为0.724,0.676,远大于0.05,接受A,C用量与产率无关的假设,将这两个变量进行剔除。

 在模型摘要中,引入催化剂B和D,R值为1,认为B,D和产率之间存在强线性相关关系,接受B,D为产率的自变量。

 在系数表格中,未标准化系数催化剂D为2,催化剂B为1,认为产率=2*D+B,逐步线性回归分析完毕。

 

图4结果解读
图4结果解读

 逐步线性回归分析对于优化实验条件具有重要实用价值,如果人工进行统计学计算则相当繁琐,借助SPSS可以迅速完成统计分析,大大提高工作效率。

 

 作者:莱阳黎曼 

展开阅读全文

标签:回归分析二元回归分析有序回归分析非线性回归回归方程

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
spss怎么做逐步回归分析 逐步回归分析spss结果解读
spss怎么做逐步回归分析?逐步回归分析是多元线性回归分析的一种,可通过spss回归分析中的“步进”法来做逐步回归分析。本文会运用例子演示逐步回归分析步骤,并进行逐步回归分析spss结果解读。
2022-05-12
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
最新文章
spss赋值后为什么显示不出来 spss赋值后为什么空白不显示
在现代数据分析中,SPSS(统计产品与服务解决方案)被广泛应用于社会科学、市场研究和健康科学等领域。尽管其功能强大,但在实际操作中,用户可能会遇到一些问题,例如赋值后数据不显示或空白。本文将探讨这些问题,并提供解决方案。
2024-06-14
spss异常值设置在哪里操作 spss异常值筛选后如何处理
在数据分析过程中,异常值是一个常见的问题,它可能会对分析结果产生影响。因此,正确处理异常值是非常重要的。本文将探讨SPSS如何处理异常值的方法。关于SPSS异常值设置在哪里操作,SPSS异常值筛选后如何处理的内容,本文向大家作简单介绍。
2024-05-22
spss去除无效数据方法 spss去除极端值方法
统计学是一门旨在收集、分析和解释数据的学科。在统计学中,数据的准确性和有效性至关重要。然而,有时候我们会遇到无效数据,这些数据可能是错误的、缺失的或者不完整的,它们会对统计结果产生严重的影响。使用SPSS对数据进行统计时,也常常会面对这些问题,关于SPSS去除无效数据方法,SPSS去除极端值方法的内容,本文向大家作简单介绍。
2024-05-08
spss异常值处理办法 spss异常值检验步骤
SPSS异常值检查是数据分析中一个非常重要的步骤。异常值指的是数据集中与其他观测值明显不同的数值。这些异常值可能会对统计分析结果产生影响,使用SPSS进行统计分析前,要对数据进行简单分析,例如查看有无缺失值,进行异常值检验等。有关SPSS异常值处理办法,SPSS异常值检验步骤的内容,本文向大家作简单介绍。
2024-04-24
spss筛选变量不能共线 spss筛选出没有缺失值的样本方法
SPSS是一种强大的统计分析软件,广泛应用于各种研究领域。在进行数据分析时,研究人员经常会遇到共线性问题。共线性是指自变量之间存在高度相关性的情况,这可能会导致模型不稳定、参数估计不准确甚至无法得出有效的结论。因此,共线性诊断和筛选变量在SPSS中变得尤为重要。有关SPSS筛选变量不能共线,SPSS筛选出没有缺失值的样本方法的内容,本文向大家作简单介绍。
2024-04-17
spss筛选功能在什么地方 spss筛选怎么做
SPSS软件是一款被广泛应用于数据分析和统计学习领域的工具。在数据处理过程中,筛选是一个非常重要的步骤,它可以帮助用户快速地找到所需的数据并进行进一步的分析。SPSS软件提供了强大的筛选功能,使用户能够轻松地筛选出符合特定条件的数据,从而提高数据处理的效率和准确性。SPSS筛选功能在什么地方,SPSS筛选怎么做,本文向大家作简单介绍。
2024-04-10

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: