SPSS > 使用技巧 > SPSS逐步回归分析步骤

SPSS逐步回归分析步骤

发布时间:2022-04-15 10: 43: 22

 在实际的生产生活中,常常会遇到这样的状况,多种催化剂共同使用,化学反应效率提高,但是不确定哪些催化剂起主要作用。一个地区的居民收入受到多种因素的影响,但是不能确定哪些因素起主要作用。在这种情况下,设计实验进行验证,就需要引入大量的影响因子,大大限制效率的提高。如果借助统计学中的逐步回归统计方法,就能大大节省实验成本。

 SPSS软件内置了逐步回归分析功能,只需将初步试验数据录入,选择合适的分析方法,SPSS就能提供影响因子的回归方程,同时剔除对结果影响不大的因素,显著提高工作效率。

 SPSS实现逐步回归的基本步骤是,将变量一个一个引入,对引入的变量逐个进行检验,逐步剔除影响最不显著的自变量,直至将全部数据计算完毕,构造更优的回归方程。

 1.数据录入

 例:对于4种催化剂的催化效率进行了研究,得到了产率的实验数据。

 打开SPSS软件,录入实验数据,如图1所示。前4列为催化剂用量,第5列为产率。

 

图1录入数据
图1录入数据

 在图2所示界面,对变量属性进行设置。

 

图2变量属性设置
图2变量属性设置

 2.进行逐步回归分析

 点击分析,回归,线性,将产率指定为因变量,将四种催化剂用量指定为自变量,方法栏选中“逐步”。

 单击选项按钮,在“使用F的概率”中的进入输入0.1,删除输入0.11。

 表示当候选变量中最大F值的P值小于或等于0.1时,引入相关变量。在引入方程的变量中,最小F值的P值大于或等于0.1时,则剔除该变量。

 点击确定进行逐步回归分析。

 

图3逐步回归分析过程
图3逐步回归分析过程

 3.逐步分析结果解读

 在逐步分析结果中,需要关注以下三个方面:

 首先,排除的变量,催化剂A和催化剂C,其显著性分别为0.724,0.676,远大于0.05,接受A,C用量与产率无关的假设,将这两个变量进行剔除。

 在模型摘要中,引入催化剂B和D,R值为1,认为B,D和产率之间存在强线性相关关系,接受B,D为产率的自变量。

 在系数表格中,未标准化系数催化剂D为2,催化剂B为1,认为产率=2*D+B,逐步线性回归分析完毕。

 

图4结果解读
图4结果解读

 逐步线性回归分析对于优化实验条件具有重要实用价值,如果人工进行统计学计算则相当繁琐,借助SPSS可以迅速完成统计分析,大大提高工作效率。

 

 作者:莱阳黎曼 

展开阅读全文

标签:回归分析二元回归分析有序回归分析非线性回归回归方程SPSS逐步回归分析SPSS逐步回归

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS非参数秩和检验的适用范围 SPSS非参数秩和检验怎么操作
如果想要对非正态分布数据进行关系分析,推荐使用SPSS非参数检验方法展开操作,这样不仅可以判断不满足正态分布的变量之间是否存在关系,还能够清楚了解数据的秩次信息。今天,我们以SPSS非参数秩和检验的适用范围,SPSS非参数秩和检验怎么操作这两个问题为例,带大家了解一下SPSS非参数检验的知识。
2025-06-13
SPSS非参数检验不显示组别怎么办 SPSS非参数检验结果怎么解读
在数据分析领域,研究者通常要对非正态分布的数据进行非参数检验,这样不仅可以判断不满足正态分布的变量之间是否存在关系,还能够清楚了解数据的秩次信息。今天,我们以SPSS非参数检验不显示组别怎么办,SPSS非参数检验结果怎么解读这两个问题为例,带大家了解一下SPSS非参数检验的相关知识。
2025-06-12
SPSS标准化残差散点图怎么画 SPSS标准化残差大于3怎么办
在针对因变量为数值型变量展开建模分析的时候,研究者可以使用SPSS线性回归的残差分析检验变量的正态性特征,例如以残差等方差性判断回归残差的方差齐性,进而有助于优化和改进线性数据建模。今天,我们SPSS标准化残差散点图怎么画,SPSS标准化残差大于3怎么办这两个问题为例,带大家了解一下SPSS标准化残差散点图的相关知识。
2025-06-12
SPSS标准化残差图怎么做 SPSS标准化残差图解读
在数据分析领域,如果研究者想对线性数据集的正态性进行分析,推荐使用SPSS残差图绘制的方法来高效掌握采集的数据信息,以便了解数据模型的拟合情况和误差分布。今天,我们以SPSS标准化残差图怎么做,SPSS标准化残差图解读这两个问题为例,带大家了解一下SPSS标准化残差的相关知识。
2025-06-11
SPSS中如何将文字表达改为数字 SPSS怎么把字符串改成数字格式
在数据分析领域,如果想要对多属性或多选项的变量进行分析,研究者需要对一些文字变量进行赋值来将字符串改为数字格式,便于后续的问卷数据统计和测量。今天,我们以SPSS中如何将文字表达改为数字,SPSS怎么把字符串改成数字格式这两个问题为例,带大家了解一下SPSS字符赋值的相关知识。
2025-06-10
SPSS数据透视表如何创建 SPSS数据透视表字段调整步骤
在数据分析领域,SPSS的功能设置不仅适用于分析繁杂数据组之间的相关关系,还能够计算各类数值并且制作出清晰明确的图表,例如数据透视表、交互作用图等。今天,我们以SPSS数据透视表如何创建,SPSS数据透视表字段调整步骤这两个问题为例,带大家了解一下SPSS透视表设置的相关知识。
2025-06-10

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: