SPSS > 使用技巧 > SPSS相关性系数怎么看 SPSS如何求相关系数

SPSS相关性系数怎么看 SPSS如何求相关系数

发布时间:2022-03-31 14: 14: 18

 品牌型号:DellN5010

 系统:Windows7

 软件版本:SPSS试用版

 SPSS软件可以进行数据的相关性分析,判断两组数据之间是否存在联系,相互影响或者服从某种分布。相关性常常以相关性系数评价,那么SPSS相关性系数怎么看?SPSS如何求相关系数?本文以最典型的线性相关分析Pearson统计为例,向大家介绍SPSS相关性分析的步骤以及结果解读。

 1.SPSS相关性系数怎么看

 Pearson统计用于评估两组数据是否符合线性关系,两组数据线性相关性越强,Pearson相关系数就越接近1(线性递增)或-1(线性递减)。一般认为,Pearson相关系数<0.3无相关性,0.3~0.7弱相关性,>0.7较强的相关性。图1为一组数据的线性相关性检验,Peason相关系数0.984,表明两者有较强的线性相关性。

 需要注意的是,关注相关系数的同时需要关注显著性系数,显著性系数小于0.05,两者呈线性相关的概率高于0.95,有统计学意义,本例中显著性系数(Sig.(双尾))为0.000,小于0.05。综合考虑认为变量1和变量2呈线性相关。

 

图1Pearson线性相关系数
图1Pearson线性相关系数

 2.SPSS如何求相关系数

 仍然以Pearson统计为例,向大家讲解SPSS相关系数求解方法,打开SPSS软件以后,输入需要进行统计计算的数据,如图2所示。

 

图2输入数据
图2输入数据

 Pearson统计为相关性分析,可通过SPSS的“相关”统计计算功能实现,我们依次点击分析-相关-双变量,打开统计计算界面。

 

图3打开相关分析功能
图3打开相关分析功能

 在图4所示的计算界面中我们需要将统计数据添加至变量中,如第一步所示,然后我们选择皮尔逊(Pearson)相关系数,点击确定,SPSS将进行Pearson统计计算,计算结果如图1所示。

 

图4进行皮尔逊相关系数计算
图4进行皮尔逊相关系数计算

 3.关于SPSS的相关性系数

 上文提到除了Pearson(皮尔逊)相关系数,还有Spearman(斯皮尔曼)相关系数和Kendalltau-b(K)(肯德尔),如图4所示,他们之间有什么不同呢,用户如何根据数据类型进行选择呢?这里可以告诉大家一个小技巧,Pearson相关系数并没有考虑数值的顺序性,而Spearman和Kendall相关系数考虑到了数值的顺序性,这在两者的计算公式中有所体现,Spearman和Kendall的计算公式对数据进行了分级运算,感兴趣的用户可以自行查阅,因此对依赖于顺序的统计,建议大家使用Spearman和Kendall相关系数进行计算。不依赖于顺序的统计数据,大家可以采用Pearson相关系数计算。

 SPSS的相关性系数怎么看,需要结合相关系数计算结果和显著性水平,以Pearson统计为例,Pearson相关系数绝对值越接近1,同时显著性系数小于0.05,说明两组数据符合统计学的线性相关,SPSS如何求相关系数,可在SPSS的相关功能中进行求解,对于双变量,SPSS提供了皮尔逊,肯德尔Tau-b(k)和斯皮尔曼三种相关性分析功能,用户可以根据数据类型进行科学的选择。

 

 作者:莱阳黎曼

展开阅读全文

标签:SPSSIBM SPSS StatisticsSPSS教程SPSS插值SPSS计算相关系数SPSS相关系数矩阵SPSS相关系数分析SPSS相关系数SPSS相关

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS检验值一般填多少 SPSS检验值可以为0吗
在SPSS检验值的测量方面,运用t检验、卡方检验、F检验等方法都可以得出p值等关键数值来分析数据之间的显著性差异,由此测量SPSS检验值是不可或缺的数据分析技能。今天我以SPSS检验值一般填多少,SPSS检验值可以为0吗这两个问题为例,带大家了解一下SPSS检验值的相关知识。
2025-04-02
SPSS检验值是什么意思 SPSS检验值怎么确定
在数据统计方面,SPSS卡方检验的运用广泛,研究者借助卡方检验可以检查两个或者多个类别变量之间的关联,对测算实际数值和期望数值的差异显著性有着重要作用。今天我以SPSS检验值是什么意思,SPSS检验值怎么确定这两个问题为例,带大家了解一下SPSS检验值的相关知识。
2025-04-01
SPSS单尾检验在哪里 SPSS单尾检验步骤详解
单尾检验常用于检验一个方向上的差异,比如某个群体的平均值是否显著高于另一个群体,而双尾检验则检验是否存在任何方向的显著差异。但很多用户在使用SPSS时发现不知道该怎么做单尾检验,下面本篇文章就来带大家了解一下SPSS单尾检验在哪里, SPSS单尾检验步骤详解的相关内容。
2025-03-26
SPSS主成分分析怎么做 SPSS主成分分析结果解读
在实际工作当中,由于收集的变量之间存在比较强的相关关系,如果直接利用数据进行分析,会让模型变得复杂,甚至可能因为变量之间的多重共线性引起较大的误差;为此,我们可以通过主成分分析来进行操作,话不多说,接下来的内容来带大家了解SPSS主成分分析怎么做,SPSS主成分分析结果解读的方法。
2025-03-26
SPSS游程检验详细模型图怎么做出来SPSS游程检验结果分析
本期我们将要为大家分享的是SPSS中的游程检验,它是一种用于检验数据序列随机性的非参数方法。通过游程检验分析,我们可以快速判断数据是否具有随机分布特征,话不多说,接下来我们就来看看SPSS游程检验详细模型图怎么做出来,SPSS游程检验结果分析的相关方法。
2025-03-26
SPSS数据描述性分析怎么做 SPSS描述性分析怎么写结论
描述性分析是属于数据分析工作的前期准备阶段,能够有效地帮助我们了解数据的整体特征和分布状况,为下一步的分析和决策提供参照。今天,我就以SPSS数据描述性分析怎么做,SPSS描述性分析怎么写结论这两个问题为例,来向大家讲解一下描述性分析的相关知识。
2025-03-25

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: