SPSS > 使用技巧 > SPSS相关性系数怎么看 SPSS如何求相关系数

SPSS相关性系数怎么看 SPSS如何求相关系数

发布时间:2022-03-31 14: 14: 18

 品牌型号:DellN5010

 系统:Windows7

 软件版本:SPSS试用版

 SPSS软件可以进行数据的相关性分析,判断两组数据之间是否存在联系,相互影响或者服从某种分布。相关性常常以相关性系数评价,那么SPSS相关性系数怎么看?SPSS如何求相关系数?本文以最典型的线性相关分析Pearson统计为例,向大家介绍SPSS相关性分析的步骤以及结果解读。

 1.SPSS相关性系数怎么看

 Pearson统计用于评估两组数据是否符合线性关系,两组数据线性相关性越强,Pearson相关系数就越接近1(线性递增)或-1(线性递减)。一般认为,Pearson相关系数<0.3无相关性,0.3~0.7弱相关性,>0.7较强的相关性。图1为一组数据的线性相关性检验,Peason相关系数0.984,表明两者有较强的线性相关性。

 需要注意的是,关注相关系数的同时需要关注显著性系数,显著性系数小于0.05,两者呈线性相关的概率高于0.95,有统计学意义,本例中显著性系数(Sig.(双尾))为0.000,小于0.05。综合考虑认为变量1和变量2呈线性相关。

 

图1Pearson线性相关系数
图1Pearson线性相关系数

 2.SPSS如何求相关系数

 仍然以Pearson统计为例,向大家讲解SPSS相关系数求解方法,打开SPSS软件以后,输入需要进行统计计算的数据,如图2所示。

 

图2输入数据
图2输入数据

 Pearson统计为相关性分析,可通过SPSS的“相关”统计计算功能实现,我们依次点击分析-相关-双变量,打开统计计算界面。

 

图3打开相关分析功能
图3打开相关分析功能

 在图4所示的计算界面中我们需要将统计数据添加至变量中,如第一步所示,然后我们选择皮尔逊(Pearson)相关系数,点击确定,SPSS将进行Pearson统计计算,计算结果如图1所示。

 

图4进行皮尔逊相关系数计算
图4进行皮尔逊相关系数计算

 3.关于SPSS的相关性系数

 上文提到除了Pearson(皮尔逊)相关系数,还有Spearman(斯皮尔曼)相关系数和Kendalltau-b(K)(肯德尔),如图4所示,他们之间有什么不同呢,用户如何根据数据类型进行选择呢?这里可以告诉大家一个小技巧,Pearson相关系数并没有考虑数值的顺序性,而Spearman和Kendall相关系数考虑到了数值的顺序性,这在两者的计算公式中有所体现,Spearman和Kendall的计算公式对数据进行了分级运算,感兴趣的用户可以自行查阅,因此对依赖于顺序的统计,建议大家使用Spearman和Kendall相关系数进行计算。不依赖于顺序的统计数据,大家可以采用Pearson相关系数计算。

 SPSS的相关性系数怎么看,需要结合相关系数计算结果和显著性水平,以Pearson统计为例,Pearson相关系数绝对值越接近1,同时显著性系数小于0.05,说明两组数据符合统计学的线性相关,SPSS如何求相关系数,可在SPSS的相关功能中进行求解,对于双变量,SPSS提供了皮尔逊,肯德尔Tau-b(k)和斯皮尔曼三种相关性分析功能,用户可以根据数据类型进行科学的选择。

 

 作者:莱阳黎曼

展开阅读全文

标签:SPSSIBM SPSS StatisticsSPSS教程SPSS插值SPSS计算相关系数SPSS相关系数矩阵SPSS相关系数分析SPSS相关系数SPSS相关

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS卡方检验样本不满足要求怎么办 卡方检验SPSS结果都小于0.5说明了什么
在数据分析的过程中,卡方样本检验是常见的一种统计方式。卡方检验主要用来检验数据样本之间的离散程度,进而判断不同数据之间的偏差值,如果数据样本在统计的时候不符合实际的统计需求,就可能导致卡方检验不满足要求。所以我们需要在统计的过程中对数据样本和统计方法进行调整,这样能够规避数据样本检验带来的结果偏差风险。下面以SPSS为例,给大家介绍SPSS卡方检验样本不满足要求怎么办,卡方检验SPSS结果都小于0.5说明了什么的具体内容。
2026-01-14
SPSS事后比较怎样进行 SPSS事后比较多重校正应如何设置
在数据分析的过程中,经常会在数据分析之后对它进行事后比较的操作。事后比较可以在方差分析的基础之上帮助我们快速找到具体存在差异的数据组。简单来说,大家可以把方差分析理解为起到了一个提示作用,告诉了我们数据样本中的均值并不相等且存在差异,但是如果想要找到具体的差异点在哪里,就需要用到事后比较了。而在进行事后比较的过程中,还会遇到设置多重校正的情况。下面以SPSS为例,给大家介绍SPSS事后比较怎样进行,SPSS事后比较多重校正应如何设置。
2026-01-14
SPSS怎么查看缺失值分布 SPSS数据缺失严重怎么处理更合理
我们在对数据样本进行统计时,经常会遇到排查缺失值的情况,缺失值指数据样本分析中出现的数值丢失情况。如果数据样本中存在的缺失值数量较多的情况,可能会导致数据分析的结果出现偏差。SPSS作为一款专业的数据分析软件,许多用户都会用它来进行数据分析,下面我们以SPSS为例,向大家介绍SPSS怎么查看缺失值分布,SPSS数据缺失严重怎么处理更合理的具体内容。
2026-01-14
SPSS变量类型怎么修改 SPSS变量标签修改后分析报错怎么办
在数据分析这个领域中,我们经常会面临着修改数据变量类型的情况。因为在一组数据变量中会存在着多种不同的变量类型(自变量、因变量、定类变量、定序变量等),这些变量类型在数据样本中担任着不同的角色,在样本分析中也有着不同的作用。下面就以SPSS数据分析软件为例,给大家介绍SPSS变量类型怎么修改,SPSS变量标签修改后分析报错怎么办的具体内容。
2026-01-14
SPSS如何导出分析报告 SPSS报表内容丢失怎么修复
数据分析报告作为承载着数据分析结果的重要内容,既起到了数据样本分析总结的作用,又可以将这部分数据分析结果应用到其他的领域和研究当中(可以作为重要的数据样本参考)。所以导出数据分析报告和修复丢失的数据就成为了数据分析中的一个重要环节,下面以SPSS为例,向大家介绍SPSS如何导出分析报告,SPSS报表内容丢失怎么修复的具体内容。
2026-01-14
SPSS协方差结构怎样设定 SPSS协方差结构拟合应如何比较
在数据分析的领域当中,协方差结构是一项重要的分析方式。作为着重分析同一数据集在不同变量之间相互关系的分析法,协方差结构在实际应用的过程中回答了一部分数据点位发生变化的时候,另一部分点位会以什么样的形式跟随变化。而协方差结构的拟合数据同样可以帮助我们观察数据的变化趋势。下面以SPSS为例,给大家介绍SPSS协方差结构怎样设定,SPSS协方差结构拟合应如何比较的具体内容。
2026-01-14

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: