IBM SPSS Statistics 中文网站 > 使用技巧 > 应用SPSS平均值检验,探索人群客单价差异的显著性

应用SPSS平均值检验,探索人群客单价差异的显著性

发布时间:2020/12/30 10:01:02

IBM SPSS Statistics平均值检验,是通过计算一个或多个自变量类别的因变量平均值,并对平均值执行单向方差检验分析,来探索自变量类别平均值是否存在差异的检验方法。

比如,我们经常会使用平均值检验来分析不同人群的花费,从而挖掘出一些高消费的人群,并对其执行精准的推广。本文就以分析不同性别人群的客单价为例,演示一下IBM SPSS Statistics的平均值检验法的使用。

一、打开数据文件

首先,如图1所示,打开一组包含性别、客单价等变量的数据,用以研究不同性别人群的平均客单价是否有差异。

图1:示例数据

二、应用平均值检验

接着,如图2所示,打开分析菜单中的比较平均值功能,并选择其中的“平均值”选项。

图2:平均值检验功能

如图3所示,设置面板中包含了因变量列表、自变量列表、选项等设置选项。接下来,我们使用示例数据实际操作一下。

图3:平均值检验设置

1、选择变量

首先?,选取“客单价”作为平均值检验的因变量,SPSS会通过计算“客单价”的平均值来检验自变量类别的差异。

然后,再选择“性别”作为自变量,由于我们只需研究一层变量(性别)的差异,因此只添加一层自变量。

图4:选择变量

2、平均值选项

接着,打开选项按钮,在如图5所示的选择面板中,选择单元格统计的数值,本例中选择了“平均值、个案数、标准差”。

然后,比较重要的一个步骤,需要将最下方的“第一层的统计”中的检验方法勾选上,Anova指的是方差分析,是平均值检验中的重要分析方法。


图5:平均值选项

3、结果分析

完成以上设置后,运行平均值检验。

从如图6所示的报告表看到,女性的客单价平均值稍高于男性的客单价平均值,但差值之间是否存在差异?需要进一步查看方差分析才能确定。

图6:客单价平均值

如图7所示,从ANOVA分析表可以看到,组间(不同性别平均客单价)的P值为0.069大于0.05(95%的置信区间),说明组间差异不显著,女性的客单价平均值不显著高于男性的客单价平均值。

Eta值的范围在0到1之间,越接近0值表示行变量和列变量之间无相关性,越接近1的值表示高度相关。从相关性测量也可以看到,性别与客单价之间无强相关性。

图7:显著性分析

以上就是IBM SPSS Statistics平均值检验的应用介绍。我们可以通过检验因变量的平均值差异,来挖掘自变量类别的差异,使用起来比较简单,结果也比较易懂。

作者:泽洋

标签:SPSS数据分析软件

读者也访问过这里:
SPSS Statistics
一款功能强大的数据统计分析工具
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
如何通过SPSS对问卷进行效度分析
效度分析是指测量的根据或手段(在问卷中为问卷题目)是否能有效检测所需测量事物的程度,是问卷分析中几乎必须进行的一个环节,效度分析分为内容效度、准则效度和结构效度,问卷分析一般所使用的效度分析一般是结构效度。通过数据分析软件IBM SPSS Statistics(win)的效度分析功能我们可轻松获得关于问卷的效度分析结果,帮助我们更好设计或评估问卷。那么如何通过IBM SPSS Statistics对问卷进行效度分析。
2021-10-26
SPSS进行变量赋值的相关操作
变量和个案是IBM SPSS数据界面很重要的两个部分,可以形象理解为地球仪上的经线和纬线。通俗一点讲数据界面的每一列是一种变量,如年龄性别等。一行中的所有变量又构成了一个个案,本篇文章着重讲解变量,个案就不做过多展开。在图1中有具体的标注,可以看一下变量和个案到底是什么样。
2021-02-23