
发布时间:2020/12/31 11:01:15
IBM SPSS Statistics的配对样本T检验与独立样本T检验相似,都可用于对比两个组的均值差异,不同的是,配对样本T检验对比的是两组变量的平均值,计算的是单个个案在两个变量的值的差异,检验其平均差值是否有差异,使用的是变量组的数据。
配对样本T检验适用于同一研究对象测试前、后的均值对比、同一研究对象施于不同方案后的均值对比等。
一、打开数据文件
本文中,我们会以测试初中生饮用牛奶前后身高是否有显著性差异,来演示IBM SPSS Statistics的配对样本T检验的操作方法。
需要注意的是,配对样本T检验使用的是变量组数据。如图1所示,打开两组初中生身高的数据。
这两组身高数据有什么区别呢?如图2所示,打开数据的变量视图,为初中生身高A、初中生身高B,两组变量分别标签为饮用牛奶前、饮用牛奶后。
二、应用配对样本T检验
接着,依次单击IBM SPSS Statistics的分析-比较平均值-成对样本T检验,打开配对样本T检验功能。
如图4所示,在设置面板中,我们可进行多组配对变量的分析,一组配对变量包含两个变量组。接下来,使用实例数据演示操作。
1.选择配对变量
本例中,我们需要探索的是饮用牛奶前后的初中生身高均值是否有显著性差异,因此,可分别将饮用牛奶前、饮用牛奶后的变量配对。
2.选项设置
接着,针对本例中的数据使用95%置信区间检验差异的显著性,确保较高的准确性。缺失值的处理按照默认的“按具体分析排除个案”选项。
3.解读分析结果
完成了以上设置后,运行配对样本T检验,并获得以下分析结果。
首先,先看一下配对样本统计数值,饮用牛奶后的身高均值高于饮用牛奶前的身高均值,但无法确定差异是否有显著性。
接着,观察配对样本的检验数据,其显著性(双尾)数值接近于0,大于0.05(95%的置信区间),拒绝两变量间无差异的假设,即饮用牛奶后的身高均值显著性高于饮用牛奶前的身高均值。
IBM SPSS Statistics配对样本T检验,还常用于实验中设置实验组、对照组的差异检验。
作者:泽洋
读者也喜欢这些内容:
IBM SPSS Statistics云版本登录使用教程
感谢您订阅IBM SPSS Statistics云版本服务,IBM SPSS Statistics云版本是由思杰马克丁+IBM+阿里云联合推出,帮助用户解决短时间使用正版软件的需求,提供周付费、月付费两种购买模式,性价比极高。那么在购买了IBM SPSS Statistics云版本之后,应该如何登陆使用呢,本篇教程就来告诉大家使用方法。...
阅读全文 >
spss中t值和p值是什么意思 spss中t值和p值的关系
在统计分析过程中,常常会遇到这样的情况:检验两个相关的样本是否来自具有相同均值的总体,就会用到t检验。t检验(Student's t test),主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布, t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。利用IBM SPSS Statistics统计分析软件进行t检验可以避免繁杂的统计学计算,快速给出结果,供用户分析。SPSS中t值和p值是什么意思,SPSS中t值和p值的关系是什么,本文结合实例,向大家做简单的介绍。...
阅读全文 >
spss显著性分析是什么意思 spss显著性分析怎么做
显著性检验是先对总体数据做出一个大致的预估,接着使用样本容量的数据信息来判断这个假设是否合理,也就是判断假设情况与实际情况之间的差异。显著性分析在检测以及社会学统计领域发挥着重要作用,其图像类似于正态分布图,因此,对数据进行显著性分析时,就需要借助专业的数据分析软件,这里就以一款名为IBM SPSS Statistics的软件来向大家介绍SPSS显著性分析是什么意思,SPSS显著性分析怎么做。...
阅读全文 >
spss决策树分析 spss决策树分析结果解读
SPSS的决策树分析是以树状图为基础的分类模型,它将个体分成若干个小组,或者依据自变量的数值推测出因变量的相关信息,在数据处理任务中占据重要地位。决策树分析不仅能够生成数据的理解准则,还可以处理连续的种类和字段,并且还能够广泛应用与小数集中。那么下面就来介绍spss决策树分析,spss决策树分析结果解读。...
阅读全文 >