发布时间:2020-12-31 11: 01: 15
IBM SPSS Statistics的配对样本T检验与独立样本T检验相似,都可用于对比两个组的均值差异,不同的是,配对样本T检验对比的是两组变量的平均值,计算的是单个个案在两个变量的值的差异,检验其平均差值是否有差异,使用的是变量组的数据。
配对样本T检验适用于同一研究对象测试前、后的均值对比、同一研究对象施于不同方案后的均值对比等。
一、打开数据文件
本文中,我们会以测试初中生饮用牛奶前后身高是否有显著性差异,来演示IBM SPSS Statistics的配对样本T检验的操作方法。
需要注意的是,配对样本T检验使用的是变量组数据。如图1所示,打开两组初中生身高的数据。
这两组身高数据有什么区别呢?如图2所示,打开数据的变量视图,为初中生身高A、初中生身高B,两组变量分别标签为饮用牛奶前、饮用牛奶后。
二、应用配对样本T检验
接着,依次单击IBM SPSS Statistics的分析-比较平均值-成对样本T检验,打开配对样本T检验功能。
如图4所示,在设置面板中,我们可进行多组配对变量的分析,一组配对变量包含两个变量组。接下来,使用实例数据演示操作。
1.选择配对变量
本例中,我们需要探索的是饮用牛奶前后的初中生身高均值是否有显著性差异,因此,可分别将饮用牛奶前、饮用牛奶后的变量配对。
2.选项设置
接着,针对本例中的数据使用95%置信区间检验差异的显著性,确保较高的准确性。缺失值的处理按照默认的“按具体分析排除个案”选项。
3.解读分析结果
完成了以上设置后,运行配对样本T检验,并获得以下分析结果。
首先,先看一下配对样本统计数值,饮用牛奶后的身高均值高于饮用牛奶前的身高均值,但无法确定差异是否有显著性。
接着,观察配对样本的检验数据,其显著性(双尾)数值接近于0,大于0.05(95%的置信区间),拒绝两变量间无差异的假设,即饮用牛奶后的身高均值显著性高于饮用牛奶前的身高均值。
IBM SPSS Statistics配对样本T检验,还常用于实验中设置实验组、对照组的差异检验。
作者:泽洋
展开阅读全文
︾
读者也喜欢这些内容:
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。...
阅读全文 >
怎样使用SPSS的概率回归方法分析数据
回归分析是数据分析中广泛应用的一种方法,如果要学习数理统计分析,回归分析将是重中之重。...
阅读全文 >
spss怎么做逐步回归分析 逐步回归分析spss结果解读
spss怎么做逐步回归分析?逐步回归分析是多元线性回归分析的一种,可通过spss回归分析中的“步进”法来做逐步回归分析。本文会运用例子演示逐步回归分析步骤,并进行逐步回归分析spss结果解读。...
阅读全文 >
巧用IBM SPSS Statistics的积差相关分析
IBM SPSS Statistics是一款被很多人选择的数据分析软件,其中囊括了现有的大部分的数学分析算法,相关分析就是其中之一。...
阅读全文 >