SPSS > 使用技巧 > 运用SPSS卡方检验,检验数据是否服从均匀分布

运用SPSS卡方检验,检验数据是否服从均匀分布

发布时间:2021-01-04 11: 33: 42

卡方检验是一种常用的非参数检验方法,其统计的是样本的实际观测值与理论推断值之间的偏离程度,卡方值越大,二者偏差程度越大;反之,二者偏差程度越小,可用于检验数值是否符合分布规律、检验因素的影响是否有差异等。

IBM SPSS Statistics非参数检验中的卡方检验,比较的是变量中的实际观测频率和期望的频率的差异。本文将以检验数值是否符合均匀分布为例,演示IBM SPSS Statistics卡方检验方法的使用。

一、打开数据文件

如图1所示,打开一组掷骰子的数据,其中包含了掷骰子次数、点数两个变量。掷骰子的结果数据是一个典型的均匀分布数据,骰子出现1-6点数的概率是相等的。

图1:掷骰子数据

二、应用卡方检验

接着,如图2所示,打开IBM SPSS Statistics的分析菜单,并选择其非参数检验中的“卡方检验”。

图2:非参数检验之卡方检验

如图3所示,设置面板中包含了检验变量列表、期望范围、期望值等选项。接下来,使用示例数据演示卡方检验的操作。

图3:卡方检验设置面板

1、选择变量

我们先简单了解一下卡方检验中的选项含义:

1. 检验变量列表,即用于检验的变量。

2. 期望范围,用于设置卡方检验的数据范围,默认选择“从数据中获取”,即使用数据中的最大值和最小值作为期望范围;如需“使用指定范围”,需手动设置范围。

3. 期望值,用于设置数据中各分类所占的比例,默认选择“所有类别相等”,即检验数据是否服从均匀分布;选择“值”,则检验数据是否服从设定的分布规律,需输入指定分组的值。

本例中,我们需要检验的是掷骰子的结果是否服从均匀分布,因此,需将“点数”添加为检验变量列表,并设置“从数据中获取”的期望范围,以及“所有类别相等”的期望值。

图4:变量设置

2、设置精确检验

由于卡方检验属于非参数检验,需要进行精确检验设置。一般情况下,选择“仅渐进法(适用于较大样本或服从渐进分布的数据)”,如果数据不符合渐进分布,则要选择蒙特卡洛法。


图5:设置精确检验

3、设置选项

接着,进行选项设置,如图6所示,选取描述统计,获取数据的频率分析数值,帮助解读数据结果。

图6:设置选项

4、分析结果解读

完成以上设置后,运行卡方检验。

首先,如图7所示,从频率表可以看到,各个点数的出现概率几乎相同,其期望个案值为16.7。

接着,分析检验统计数据,其渐近显著性为1,表明检验结果不显著,不能拒绝假设。由于本例检验所用的原假设是数据的分布与均匀分布无差异,检验结果不显著,无法拒绝原假设,也就是数据服从均匀分布。

图7:结果不显著

综上所述,通过运用IBM SPSS Statistics的卡方检验,并设定的所有类别相等的期望,可检验数据是否服从均匀分布。

另外,卡方检验除了可用于检验均匀分布外,还可以通过设定交叉表进行列联表分析,来探索变量间的相关关系。

作者:泽洋

展开阅读全文

标签:IBM SPSS Statistics卡方检验

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS酒水行业应用案例
在酒水行业的生产、研发与决策过程中,数据分析是提升效率、优化质量的核心支撑。某知名酒企此前依赖基础工具与外部服务处理数据,面临分析精度低、成本高、流程不规范等问题。通过部署 SPSS 专业数据分析软件,结合控制图、线性回归、主成分分析等多类统计方法,该企业实现了生产过程的精准监控、质量因素的深度挖掘及决策的科学化,显著提升了自主分析能力与业务效益。本文将基于该酒企的实践案例,详细阐述 SPSS 在酒水行业的具体应用。
2025-08-29
SPSS临床应用案例
在医疗科研领域,临床数据的统计分析是验证研究假设、得出科学结论的关键环节。某大型三甲医院作为大学医学院附属医院,其肿瘤科医生兼具临床诊疗与科研教学双重职责,在开展多项临床研究项目时积累了大量数据,亟需高效准确的统计分析工具。SPSS Statistics 凭借操作简便、功能全面的优势,成为该医院处理临床科研数据的首选工具。本文将以该医院肿瘤科的临床研究数据为例,详细阐述 SPSS 在统计描述、统计推断及统计建模中的具体应用,为医疗科研工作者提供参考。
2025-08-29
SPSS假设检验P值怎么算 SPSS假设检验结果怎么看
很多时候人们无法分辨两组数据间的差异是来自于抽样不均匀,还是来自数据总体的差异,这时候可以通过假设检验的方法予以判别。假设检验先假定一个结论,然后使用统计学方法推测是否接受该结论,判别两组数据之间是否存在差异。人工进行假设检验,需要进行大量计算,还需要查表,非常繁琐。借助统计学软件,如SPSS,可以高效的进行假设检验。SPSS假设检验P值怎么算,SPSS假设检验结果怎么看,本文借助实例,向大家作简单介绍。
2025-08-27
SPSS变量名称怎么改,SPSS变量名称非法字符怎么办
变量是我们进行数据分析的主体,变量的类型和名称有很多,我们需要为不同的变量设定不同的名称,才能使SPSS有效地识别并判断出它们之间的数据属性。今天我就以SPSS变量名称怎么改,SPSS变量名称非法字符怎么办这两个问题为例,来向大家讲解一下SPSS中有关变量名称设定的相关知识。
2025-08-27
SPSS数字和字符串的区别 SPSS数字和数值一样吗
常规意义上我们理解的数据,可能只是各式各样的数字,但实际情况下,数值、文字、比值、区间等等,都囊括在数据分析工作的范围之内。今天我就以SPSS数字和字符串的区别,SPSS数据和数值一样吗这两个问题为例,来向大家讲解一下SPSS中不同变量类型之间的差别。
2025-08-27
SPSS数据透视表好用吗 SPSS数据透视表变量两个值怎么做
从名称上我们就能看出,数据透视表是一种表格形式的数据分析工具。设定完整的数据透视表,不仅能够分析已有数据,还支持数据的动态更新和汇总运算,功能十分强大。今天我就以SPSS数据透视表好用吗,SPSS数据透视表变量两个值怎么做这两个问题为例,来向大家讲解一下SPSS中关于数据透视表的相关知识。
2025-08-27

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: