IBM SPSS Statistics 中文网站 > 使用技巧 > SPSS相关性分析案例

SPSS相关性分析案例

发布时间:2021-11-15 14: 40: 06

      SPSS内部提供了多种分析数据相关性的方法:卡方检验(Chi-SquareTest),Pearson相关系数计算,Spearman相关系数计算和Kendall的tau-b(K)相关系数计算。这四种分析方法适用于不同的数据类型。今天向大家展示一个SPSS相关性分析案例,介绍使用SPSS进行Kendall的tau-b(K)相关系数计算及结果分析。

   1.案例及数据录入

   在某一地区,人们想调查学历与收入之间是否存在关系,具体实施方法是将不同收入的调查对象进行分级,级别分别为低收入,中等收入,高收入,学历也进行分级,分别为高中及以下,本科,研究生及以上。对于分级的数据,卡方检验,Pearson相关系数,Spearman相关系数均不再适用,针对同一研究对象,分级的数据应该采用Kendall的tau-b(K)相关系数统计方法进行分析。

   打开SPSS软件,将低收入设置为1级别,中等收入设置为2级别,高收入设置为3级别,高中及以下设置为1级别,本科设置为2级别,研究生及以上设置为3级别,按图1所示录入调查数据。

图1设置级别并录入数据
图1设置级别并录入数据

   

   然后打开图2所示界面,对变量属性进行设置。VAR00001设置为学历级别,VAR00002设置为收入级别。

图2变量属性设置
图2变量属性设置

   

   2.Kendall的tau-b(K)相关系数计算

   如图3所示界面,点击分析,相关,双变量,然后将变量添加至3所示位置,在4所示位置选择肯德尔的tau-b(K),然后点击确定,SPSS将进行相关系数计算。

图3Kendall的tau-b(K)相关系数计算
图3Kendall的tau-b(K)相关系数计算

   

   3.Kendall的tau-b(K)相关系数计算结果分析

图4Kendalltau-b系数计算结果
图4Kendalltau-b系数计算结果

   

   对于Kendall的tau-b(K)系数,如果相关系数低于0.3则为不相关,0.3~0.7之间为弱相关,大于0.7为强相关。

   结果可以看出,本例检验的相关系数为0.240小于0.3判断,收入与学历之间不相关。

   同时检验的显著性水平(图中的Sig.)为0.363,大于0.05,说明应接受不相关假设,两者之间确实不相互影响。

   通过分析以上两个结果数据,结论为收入与学历之间不相关。

   以上就是使用Kendall的tau-b(K)系数计算分析数据相关性案例的全部内容了,由于Kendall的tau-b(K)系数计算可以对数据进行分级统计,所以在社会学研究中,Kendall的tau-b(K)系数实用性非常强。想获取更多的SPSS使用方法,大家可以登录SPSS中文网站进行学习。

   

   作者:莱阳黎曼

展开阅读全文

标签:SPSS相关性分析

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
spss怎么做逐步回归分析 逐步回归分析spss结果解读
spss怎么做逐步回归分析?逐步回归分析是多元线性回归分析的一种,可通过spss回归分析中的“步进”法来做逐步回归分析。本文会运用例子演示逐步回归分析步骤,并进行逐步回归分析spss结果解读。
2022-05-12
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
最新文章
spss赋值后为什么显示不出来 spss赋值后为什么空白不显示
在现代数据分析中,SPSS(统计产品与服务解决方案)被广泛应用于社会科学、市场研究和健康科学等领域。尽管其功能强大,但在实际操作中,用户可能会遇到一些问题,例如赋值后数据不显示或空白。本文将探讨这些问题,并提供解决方案。
2024-06-14
spss异常值设置在哪里操作 spss异常值筛选后如何处理
在数据分析过程中,异常值是一个常见的问题,它可能会对分析结果产生影响。因此,正确处理异常值是非常重要的。本文将探讨SPSS如何处理异常值的方法。关于SPSS异常值设置在哪里操作,SPSS异常值筛选后如何处理的内容,本文向大家作简单介绍。
2024-05-22
spss去除无效数据方法 spss去除极端值方法
统计学是一门旨在收集、分析和解释数据的学科。在统计学中,数据的准确性和有效性至关重要。然而,有时候我们会遇到无效数据,这些数据可能是错误的、缺失的或者不完整的,它们会对统计结果产生严重的影响。使用SPSS对数据进行统计时,也常常会面对这些问题,关于SPSS去除无效数据方法,SPSS去除极端值方法的内容,本文向大家作简单介绍。
2024-05-08
spss异常值处理办法 spss异常值检验步骤
SPSS异常值检查是数据分析中一个非常重要的步骤。异常值指的是数据集中与其他观测值明显不同的数值。这些异常值可能会对统计分析结果产生影响,使用SPSS进行统计分析前,要对数据进行简单分析,例如查看有无缺失值,进行异常值检验等。有关SPSS异常值处理办法,SPSS异常值检验步骤的内容,本文向大家作简单介绍。
2024-04-24
spss筛选变量不能共线 spss筛选出没有缺失值的样本方法
SPSS是一种强大的统计分析软件,广泛应用于各种研究领域。在进行数据分析时,研究人员经常会遇到共线性问题。共线性是指自变量之间存在高度相关性的情况,这可能会导致模型不稳定、参数估计不准确甚至无法得出有效的结论。因此,共线性诊断和筛选变量在SPSS中变得尤为重要。有关SPSS筛选变量不能共线,SPSS筛选出没有缺失值的样本方法的内容,本文向大家作简单介绍。
2024-04-17
spss筛选功能在什么地方 spss筛选怎么做
SPSS软件是一款被广泛应用于数据分析和统计学习领域的工具。在数据处理过程中,筛选是一个非常重要的步骤,它可以帮助用户快速地找到所需的数据并进行进一步的分析。SPSS软件提供了强大的筛选功能,使用户能够轻松地筛选出符合特定条件的数据,从而提高数据处理的效率和准确性。SPSS筛选功能在什么地方,SPSS筛选怎么做,本文向大家作简单介绍。
2024-04-10

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: