SPSS > 使用技巧 > SPSS相关性分析案例

SPSS相关性分析案例

发布时间:2021-11-15 14: 40: 06

      SPSS内部提供了多种分析数据相关性的方法:卡方检验(Chi-SquareTest),Pearson相关系数计算,Spearman相关系数计算和Kendall的tau-b(K)相关系数计算。这四种分析方法适用于不同的数据类型。今天向大家展示一个SPSS相关性分析案例,介绍使用SPSS进行Kendall的tau-b(K)相关系数计算及结果分析。

   1.案例及数据录入

   在某一地区,人们想调查学历与收入之间是否存在关系,具体实施方法是将不同收入的调查对象进行分级,级别分别为低收入,中等收入,高收入,学历也进行分级,分别为高中及以下,本科,研究生及以上。对于分级的数据,卡方检验,Pearson相关系数,Spearman相关系数均不再适用,针对同一研究对象,分级的数据应该采用Kendall的tau-b(K)相关系数统计方法进行分析。

   打开SPSS软件,将低收入设置为1级别,中等收入设置为2级别,高收入设置为3级别,高中及以下设置为1级别,本科设置为2级别,研究生及以上设置为3级别,按图1所示录入调查数据。

图1设置级别并录入数据
图1设置级别并录入数据

   

   然后打开图2所示界面,对变量属性进行设置。VAR00001设置为学历级别,VAR00002设置为收入级别。

图2变量属性设置
图2变量属性设置

   

   2.Kendall的tau-b(K)相关系数计算

   如图3所示界面,点击分析,相关,双变量,然后将变量添加至3所示位置,在4所示位置选择肯德尔的tau-b(K),然后点击确定,SPSS将进行相关系数计算。

图3Kendall的tau-b(K)相关系数计算
图3Kendall的tau-b(K)相关系数计算

   

   3.Kendall的tau-b(K)相关系数计算结果分析

图4Kendalltau-b系数计算结果
图4Kendalltau-b系数计算结果

   

   对于Kendall的tau-b(K)系数,如果相关系数低于0.3则为不相关,0.3~0.7之间为弱相关,大于0.7为强相关。

   结果可以看出,本例检验的相关系数为0.240小于0.3判断,收入与学历之间不相关。

   同时检验的显著性水平(图中的Sig.)为0.363,大于0.05,说明应接受不相关假设,两者之间确实不相互影响。

   通过分析以上两个结果数据,结论为收入与学历之间不相关。

   以上就是使用Kendall的tau-b(K)系数计算分析数据相关性案例的全部内容了,由于Kendall的tau-b(K)系数计算可以对数据进行分级统计,所以在社会学研究中,Kendall的tau-b(K)系数实用性非常强。想获取更多的SPSS使用方法,大家可以登录SPSS中文网站进行学习。

   

   作者:莱阳黎曼

展开阅读全文

标签:SPSS相关性分析SPSS相关性检验SPSS相关性

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS分层卡方检验步骤 SPSS分层卡方检验结果解读
分层卡方检验是SPSS中常用的统计分析方法之一,常用来识别分类变量中的混杂因素并控制其影响。通过将数据按混杂因素分层后,分别在每一层内分析分类变量之间的关联性,从而排除混杂变量的干扰。接下来本文将来带大家了解SPSS分层卡方检验步骤,SPSS分层卡方检验结果解读的相关内容。
2025-04-24
SPSS逻辑回归怎么做 SPSS逻辑回归结果怎么看
在实际生活中我们会遇到客户是否产生购买行为、产品是否合格、学生是否通过能力考核这些典型的二分类问题,对于这些问题我们都可以用SPSS中的逻辑回归来轻松解决。今天我们就来分析一下SPSS逻辑回归怎么做,SPSS逻辑回归结果怎么看的相关内容。
2025-04-24
SPSS变量重构是什么 SPSS变量重构怎么做
SPSS作为一款强大的数据统计分析软件,在数据分析和数据统计上有着很多的功能,除了常见的一些数据分析方法外,SPSS还可以对已有数据进行结构重组,这就是SPSS的变量重构功能。接下来给大家详细讲解有关SPSS变量重构是什么,SPSS变量重构怎么做的相关内容。
2025-04-24
SPSS语法编辑器在哪 SPSS语法编辑器怎么用
在SPSS做数据分析时,我们除了可以用SPSS提供的现成功能,还可以通过编辑代码的方式,运行其他SPSS未提供的功能。除此以外,代码还可以用来运行一些重复性的统计分析工作,比如有多个变量要进行单因素方差分析,我们只要在代码里面修改变量名,就能重复运算。那么,SPSS语法编辑器在哪,SPSS语法编辑器怎么用?接下来,让我们一起来学习下吧。
2025-04-22
SPSS显著性字母怎么标记 SPSS中显著性主要看哪个数据
SPSS测量结果的p值在数据统计领域通常用于显著性分析,除了用p值直接标注,研究者也可以使用显著性字母标注方法来分析多个组别的比较结果。今天,我们以SPSS显著性字母怎么标记,SPSS中显著性主要看哪个数据这两个问题为例,带大家了解一下SPSS显著性字母标记的知识。
2025-04-22
SPSS数据分析中p代表什么 SPSS数据分析中星号的意思是什么
在数据统计领域,SPSS不仅可以计算各类数据占比,还可以对庞大的数据集进行数据组别之间的比较和分析,例如t检验、卡方检验、F检验等方法计算p值等关键数值。今天,我们以SPSS数据分析中p代表什么,SPSS数据分析中星号的意思是什么这两个问题为例,带大家了解一下SPSS关于数据分析p值的相关知识。
2025-04-22

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: