SPSS > 使用技巧 > SPSS相关性分析案例

SPSS相关性分析案例

发布时间:2021-11-15 14: 40: 06

      SPSS内部提供了多种分析数据相关性的方法:卡方检验(Chi-SquareTest),Pearson相关系数计算,Spearman相关系数计算和Kendall的tau-b(K)相关系数计算。这四种分析方法适用于不同的数据类型。今天向大家展示一个SPSS相关性分析案例,介绍使用SPSS进行Kendall的tau-b(K)相关系数计算及结果分析。

   1.案例及数据录入

   在某一地区,人们想调查学历与收入之间是否存在关系,具体实施方法是将不同收入的调查对象进行分级,级别分别为低收入,中等收入,高收入,学历也进行分级,分别为高中及以下,本科,研究生及以上。对于分级的数据,卡方检验,Pearson相关系数,Spearman相关系数均不再适用,针对同一研究对象,分级的数据应该采用Kendall的tau-b(K)相关系数统计方法进行分析。

   打开SPSS软件,将低收入设置为1级别,中等收入设置为2级别,高收入设置为3级别,高中及以下设置为1级别,本科设置为2级别,研究生及以上设置为3级别,按图1所示录入调查数据。

图1设置级别并录入数据
图1设置级别并录入数据

   

   然后打开图2所示界面,对变量属性进行设置。VAR00001设置为学历级别,VAR00002设置为收入级别。

图2变量属性设置
图2变量属性设置

   

   2.Kendall的tau-b(K)相关系数计算

   如图3所示界面,点击分析,相关,双变量,然后将变量添加至3所示位置,在4所示位置选择肯德尔的tau-b(K),然后点击确定,SPSS将进行相关系数计算。

图3Kendall的tau-b(K)相关系数计算
图3Kendall的tau-b(K)相关系数计算

   

   3.Kendall的tau-b(K)相关系数计算结果分析

图4Kendalltau-b系数计算结果
图4Kendalltau-b系数计算结果

   

   对于Kendall的tau-b(K)系数,如果相关系数低于0.3则为不相关,0.3~0.7之间为弱相关,大于0.7为强相关。

   结果可以看出,本例检验的相关系数为0.240小于0.3判断,收入与学历之间不相关。

   同时检验的显著性水平(图中的Sig.)为0.363,大于0.05,说明应接受不相关假设,两者之间确实不相互影响。

   通过分析以上两个结果数据,结论为收入与学历之间不相关。

   以上就是使用Kendall的tau-b(K)系数计算分析数据相关性案例的全部内容了,由于Kendall的tau-b(K)系数计算可以对数据进行分级统计,所以在社会学研究中,Kendall的tau-b(K)系数实用性非常强。想获取更多的SPSS使用方法,大家可以登录SPSS中文网站进行学习。

   

   作者:莱阳黎曼

展开阅读全文

标签:SPSS相关性分析SPSS相关性检验SPSS相关性

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS交叉验证方法怎么用 SPSS交叉分析怎么理解
交叉验证是一种多维度的数据分析法,可以将多个变量进行交叉组合,生成二维或多维分析表格,以此展现出变量之间的关联性以及潜在规律。今天我就以SPSS交叉验证方法怎么用,SPSS交叉分析怎么理解这两个问题为例,来向大家讲解一下SPSS中关于交叉验证法的相关知识。
2025-09-18
SPSS数据排序如何设置 SPSS数据排序功能最大值和最小值
数据分析作为SPSS的重要主题,包含了数量计算、数据预测、数值对比等方面,在汇总统计各类数值的基础上,我们常常会需要对数据进行排序比较,而排序就是根据数值的大小来进行排列。本文以SPSS数据排序如何设置,SPSS数据排序功能最大值和最小值这两个问题为例,带大家了解一下SPSS数据排序的知识。
2025-09-18
SPSS数据透视表在哪 SPSS数据透视表怎么做
在数据分析领域,我们如何查看多种数据的汇总情况呢?SPSS的图表编辑功能可以计算、分析、统计各类数值,并用三线透视表的方式来清晰呈现测量结果,这就需要研究者熟悉图表操作的功能,能够对表格的初始格式进行修改与调整。本文以SPSS数据透视表在哪,SPSS数据透视表怎么做这两个问题为例,给大家介绍一下SPSS数据透视表的相关知识。
2025-09-18
SPSS自定义表格怎么设计 SPSS自定义表格行列表头设置方法
对于进行数据分析的研究者来说,SPSS设置的初始表格需要在格式上进行进一步的调整和规范,也就是需要SPSS用户自行设置和修改图表格式,借助SPSS图表编辑的工具来操作。本文以SPSS自定义表格怎么设计,SPSS自定义表格行列表头设置方法这两个问题为例,给大家介绍一下SPSS自定义表格的相关知识。
2025-09-18
SPSS数据加权有什么用 SPSS数据加权与不加权的区别
数据加权是数据分析过程中非常实用的一种数据分析技巧,根据每一项个案要素的重要程度,合理调整它们的总体占比,随后再进行计算,就能得到更加精准的分析结果。今天我就以SPSS数据加权有什么用,SPSS数据加权与不加权的区别这两个问题为例,来向大家讲解一下数据加权的相关知识。
2025-09-18
SPSS线性回归如何构建 SPSS线性回归自变量筛选方法
在数据分析领域,当自变量类型为定序或者定距变量的时候,我们可以借助SPSS线性回归的方法来建立变量之间函数变化关系的模型,这适用于自变量与因变量呈线性关系的情况,有助于后续的数据划分和定义。本文以SPSS线性回归如何构建,SPSS线性回归自变量筛选方法这两个问题为例,给大家介绍一下SPSS线性回归的相关知识。
2025-09-18

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: