SPSS > 使用技巧 > SPSS相关性分析结果怎么看

SPSS相关性分析结果怎么看

发布时间:2021-11-16 14: 42: 19

   SPSS自问世以来,因功能强大,便于使用,深受用户的喜爱和好评。由于涉及到专业的统计学知识,对于新手来说,SPSS的统计结果并不容易解读,今天向大家介绍如何解读SPSS相关性分析结果。

   SPSS相关性分析包含以下四种方法:卡方检验,Spearman相关系数计算,Pearson相关系数计算和Kendall的Tau-b相关系数计算。

   1.卡方检验(Chi-SquareTest)结果解读

   卡方检验(Chi-SquareTest)是由Pearson提出的一种统计方法,在一定的置信水平和自由度下,通过比较卡方统计量和卡方分布函数概率值,判断实际概率与期望概率是否吻合,进而分析两个分类变量的相关性。

   卡方检验(Chi-SquareTest)适用于不服从正态分布的数据,两组变量是无序的,相互交叉的,并且是可定类的。如图1是某种药物单独使用和药物与放疗同时使用时,治疗是否有效的卡方检验结果。

图1药物疗效卡方检验
图1药物疗效卡方检验

   

   个案处理摘要显示了有效数据和无效数据的数量。VAR00001*VAR00002交叉表显示各变量对应的频数,VAR00001列1代表单独使用药物,2代表药物与放疗同时使用,VAR00002行1代表有疗效的人数,2代表无疗效的人数。

   行列变量为各为二组,自由度为(2-1)×(2-1)=1,Pearsonχ2值为22.475,由于没有单元格期望小于5,所以接受Pearson卡方检验结果,认为实际值和期望值有较大差异。

   显著性数值为0.000小于0.05,有统计学的显著性差异。

   综上两点,不能接受无关假设,具有统计学意义,结论为单独使用药物与药物放疗同时进行有显著性差异。

   2.Pearson相关系数计算结果解读

   Pearson相关系数用于评估两组数据是否符合线性关系,不能用于符合曲线关系的数据,线性相关越强,Pearson相关系数就越接近1(线性递增)或-1(线性递减)。图2为一组数据的线性相关性检验,可以看出,Peason相关系数0.984,表明两者有较强的线性相关性,一般认为<0.3无相关性,0.3~0.7弱相关性,>0.7较强的相关性。

   同时显著性系数(Sig.(双尾))为0.000,小于0.05,两个变量之间相关性有统计学意义。综上认为变量1和变量2强相关。

图2Pearson检验结果
图2Pearson检验结果

   

   3.Spearman相关系数计算结果解读

   Spearman相关系数适用于不满足线性关系,且不满足正态分布的数据,如图3所示,实际这是两组随机产生的数据,用Spearman相关系数计算时,结果为0.257,<0.3无相关性,与Pearson相关系数类似,<0.3不相关,0.3~0.7为弱相关,>0.7为强相关。同时显著性系数(Sig.)为0.623,远远大于0.05,变量间无统计学相关性,综上,认为两组数据不相关。

图3Spearman相关系数计算
图3Spearman相关系数计算

   

   4.Kendall的tau-b(K)相关系数计算结果解读

   进行Kendall的tau-b(K)相关分析,需要满足下列3个条件:

   1.两个变量是有序分类变量;

   2.两个变量相对应的研究对象是一定的。

   例如调查工资与学历之间的关系,两个变量学历和收入都是等级变量,符合条件1;两个变量均对应同一研究对象:一个区域内的所有工作的成年人。符合条件2。收入等级分别为1高收入,2中收入,3低收入,学历等级分别为1高学历,2中等学历,3低学历。结果分析如图4所示。相关系数为0.480,有弱的相关性。但是显著性系数(Sig.)为0.137,大于0.05,认为两者之间无统计学相关性,综上认为学历和收入不相关。

图4Kendalltau-b系数计算
图4Kendalltau-b系数计算

   

   以上是SPSS相关性分析结果怎么看的初步解读,想更深入的学习了解SPSS统计学计算方法及结果解读,可以登录SPSS中文网站进行学习。

   

  作者:莱阳黎曼

展开阅读全文

标签:SPSS

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS趋势卡方怎么做 SPSS趋势卡方检验怎么看正相关
趋势卡方是SPSS中检验变量相关性的方法之一,当我们的分析数据中存在多个变量时,就可以使用趋势卡方来检验这些变量是否相互关联、相互影响。检验完毕后,我们也可以根据这些检验结果来选择更加合适的数据分析模型。今天我就以SPSS趋势卡方怎么做,SPSS趋势卡方检验怎么看正相关这两个问题为例,来向大家讲解一下趋势卡方的相关知识。
2025-12-17
SPSS如何计算线性回归 SPSS线性回归数据分析
SPSS是一款功能十分强大的数据分析软件,它将原本复杂的数据分析工作变得简洁化,并通过友好的图像界面满足普罗大众的日常需求。而线性回归是SPSS中最核心的功能模块之一。今天我就以SPSS如何计算线性回归,SPSS线性回归数据分析这两个问题为例,来向大家讲解一下有关线性回归的知识。
2025-12-17
SPSS标准化残差怎么计算 SPSS标准化残差图怎么看
回归分析是SPSS中的重量级分析模型,而其中的标准化残差则是用于观察变量与回归模型之间的适配程度。通过残差值,我们可以找到数据中隐藏的极端个案。在医药学、基因分析等领域,实验人员经常借助标准化残差来找寻诸多分析结果中的特殊个案或异变量,进而对这些特殊的案例进行深度研究。今天我就以SPSS标准化残差怎么计算,SPSS标准化残差图怎么看这两个问题为例,来向大家讲解一下有关标准化残差的相关知识。
2025-12-17
SPSS结果中显著性水平怎么看 SPSS输出查看器内容保存方式
作为一款专业的数据分析软件,SPSS软件凭借着自身专业的功能与过硬的数据分析本领,受到了众多用户的青睐。而在使用SPSS的过程中,显著性分析是大家经常会遇到的问题。显著性分析的主要作用是帮助我们分析两组或者多组变量之间的显著性关系,在得到数据显著性分析的结果后,会需要把数据内容进行保存和留用。接下来给大家介绍SPSS结果中显著性水平怎么看,SPSS输出查看器内容保存方式的具体内容。
2025-12-17
如何将问卷星中的数据导入SPSS 如何对问卷星的数据进行SPSS分析
如今无论是在职场还是大学校园,都经常会用到问卷调查。问卷调查可以帮我们快速收集用户数据,了解用户的需求、关注点,帮助我们从数据中分析出研究方向、需要如何改进。而问卷星是常用的用来收集用户问题的问卷调查软件之一。下面就来说说如何将问卷星中的数据导入SPSS,如何对问卷星的数据进行SPSS分析的相关内容。
2025-12-17
SPSS如何计算变量的回归系数 SPSS回归分析中如何加入控制变量
在回归分析的领域中,回归系数通常占据着重要的地位,回归系数的存在相当于让整个回归方程有了方向之分。在回归方程中表示了自变量对因变量影响程度大小的参数,回归系数的大小与自变量和因变量的变化密切相关。当我们需要计算变量的回归系数时,使用SPSS不仅可以计算变量的回归系数,还可以在回归分析中设置控制变量。接下来给大家介绍SPSS如何计算变量的回归系数,SPSS回归分析中如何加入控制变量的具体内容。
2025-12-17

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: