IBM SPSS Statistics 中文网站 > 使用技巧 > SPSS教程之神经网络的变量与方法设置

SPSS教程之神经网络的变量与方法设置

发布时间:2021/03/15 11:14:15

神经网络是基于模仿生物大脑结构及功能的信息处理系统,可通过各种算法从数据中学习如何完成任务,在模式识别、人工智能、预测、医学等领域拥有广阔的发展前景。

在本文中,会通过神经网络中的经典例子鸢尾花,讲解如何利用IBM SPSS Statistics实现神经网络的数据处理和模型训练,从而得到相应的神经网络模型。

一、数据的标准化处理

在实际场景中应用神经网络方法时,通常需要对数据进行标准化处理,以此消除数据之间的量纲差异,让后续的数据使用更加方便。

本文使用的是一组包含三种类型的鸢尾花数据,拥有四个指标,目的是通过四个指标对鸢尾花的类型进行预测。

图1:示例数据

首先,如图2所示,在分析菜单中打开描述功能。

图2:描述功能

如图3所示,选中“将标准化值另存为变量”,点击确定。

图3:标准化值另存为变量

最终得到标准化的数据,如图4所示。

图4:标准化数值

二、神经网络的实现

首先需要生成一个分组变量,将70%的样本数据用于训练。如图5所示,选择数据菜单中的计算变量功能,设置目标变量“分组”,使用数字表达式对变量分组。

图5:变量分组

如图6,在分析菜单中选中神经网络,打开多层感知器功能。

图6:多层感知器功能

接下来在功能面板中设置各项参数,如图7所示,在变量分区中设置因变量和因子。

图7:设置参数

点击分区,如图8所示,选择已生成的分组变量。

图8:分区变量选择

再点击输出,选择图9中被选中的选项。

图9:输出选项

最后点击保存,如图10所示,选择图中的两个选项,然后点击确定。最终可得到这组数据的神经网络模型及训练结果。

图10:保存

三、小结

本文中,介绍了神经网络在分类领域的应用,并讲解了如何使用SPSS实现神经网络模型的训练及应用。想要学习更多关于SPSS的使用技巧,可访问IBM SPSS Statistics中文网站。

作者:Noel

标签:IBM SPSS Statistics数据分析软件

读者也访问过这里:
SPSS Statistics
一款功能强大的数据统计分析工具
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
如何通过SPSS对问卷进行效度分析
效度分析是指测量的根据或手段(在问卷中为问卷题目)是否能有效检测所需测量事物的程度,是问卷分析中几乎必须进行的一个环节,效度分析分为内容效度、准则效度和结构效度,问卷分析一般所使用的效度分析一般是结构效度。通过数据分析软件IBM SPSS Statistics(win)的效度分析功能我们可轻松获得关于问卷的效度分析结果,帮助我们更好设计或评估问卷。那么如何通过IBM SPSS Statistics对问卷进行效度分析。
2021-10-26
SPSS进行变量赋值的相关操作
变量和个案是IBM SPSS数据界面很重要的两个部分,可以形象理解为地球仪上的经线和纬线。通俗一点讲数据界面的每一列是一种变量,如年龄性别等。一行中的所有变量又构成了一个个案,本篇文章着重讲解变量,个案就不做过多展开。在图1中有具体的标注,可以看一下变量和个案到底是什么样。
2021-02-23