SPSS > 使用技巧 > IBM SPSS Statistics常用图表附例演示讲解

IBM SPSS Statistics常用图表附例演示讲解

发布时间:2021-08-09 13: 23: 59

IBM SPSS Statistics的图表功能非常强大,囊括了直方图、散点图、饼图、折线图、茎叶图等常用的图表,不仅可用于数据的预先分析,而且其图表的格式美观,更可直接在展示报告中使用,减少后续作图的时间。

本文将会介绍IBM SPSS Statistics中的几个实用的图表类型,分别是SPSS散点图、饼图、直方图与P-P图。

一、散点图

SPSS的散点图是运用直角坐标轴展示因变量随着自变量变化而变化的图表,可直观地展示自变量与因变量的数据分布特点,并预先了解其分布的趋势。

以图1所示的销售额与客流量的数据为例。

图1:销售额与客流量数据
图1:销售额与客流量数据

绘制以客流量为自变量,销售额为因变量的散点图。如图2所示,可以观察到,销售额随着客流量的增长而增长,呈现线性正相关的趋势。根据数据分布特点,我们可进一步构建数据的线性回归方程。

图2:销售额与客流量散点图
图2:销售额与客流量散点图

二、饼图

SPSS的饼图展示的是变量中各数据项目的大小与占比情况,可用于了解数据的分布特点、检查数据的代表性等。

比如,在如图3所示的学生抽样分数数据中,我们需要检查数据是否具有代表性,即各班抽样的个案数是否符合总体占比。

图3:学生分数抽样
图3:学生分数抽样

根据以上数据制作以班级作为变量的饼图,如图4所示,可以看到,二班与一班抽样的个案数占比较大,三班则相对较少,需根据实际的班级人数调整抽样的占比。

图4:班级组成
图4:班级组成

三、直方图

SPSS的直方图是以纵向或横向的条纹表示数据分布情况的图表,常用于对比不同类别的数据分布。

比如,同样是使用以上学生分数抽样为例制作直方图,如图5所示,以分数作为Y轴,性别个案计数作为X轴,可得到不同性别学生的分数分布情况。

图5:不同性别的分数分布
图5:不同性别的分数分布

除了以上横向条纹结构外,直方图也常使用纵向条纹的结构。在常用的正态性检验中,我们就经常会使用到标准化残差的直方图,检查数据的正态性。

图6:标准化残差直方图
图6:标准化残差直方图

四、P-P图

说到检查数据的分布(比如上文所说的正态性),就不得不提到SPSS的P-P图。

P-P图,实际上是预期累积概率与实测累积概率的散点图,当以上两个变量的数据点位于一条直线上时,表示该数据符合指定的分布

我们以销售额的数据为例。

图7:销售额与客流量数据
图7:销售额与客流量数据

制作销售额的正态P-P图,可观察到其预期累积概率与实测累积概率是位于一条直线上的,说明销售额数据的分布符合正态分布。

在进行方差分析时,我们往往要先检查数据是否符合正态分布,通过直方图、P-P图可快速检查数据分布的特点。

图8:P-P图
图8:P-P图

五、小结

综上所述,IBM SPSS Statistics丰富而实用的图表功能,可帮助我们快速地了解数据分布的特点,并据此选择适合的分析方法。除此之外,SPSS图表美观的格式、清晰的图例说明,也减少了后续作图的繁琐,可直接用于报告文件中。

作者:泽洋

展开阅读全文

标签:SPSS

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS交叉验证方法怎么用 SPSS交叉分析怎么理解
交叉验证是一种多维度的数据分析法,可以将多个变量进行交叉组合,生成二维或多维分析表格,以此展现出变量之间的关联性以及潜在规律。今天我就以SPSS交叉验证方法怎么用,SPSS交叉分析怎么理解这两个问题为例,来向大家讲解一下SPSS中关于交叉验证法的相关知识。
2025-09-18
SPSS数据排序如何设置 SPSS数据排序功能最大值和最小值
数据分析作为SPSS的重要主题,包含了数量计算、数据预测、数值对比等方面,在汇总统计各类数值的基础上,我们常常会需要对数据进行排序比较,而排序就是根据数值的大小来进行排列。本文以SPSS数据排序如何设置,SPSS数据排序功能最大值和最小值这两个问题为例,带大家了解一下SPSS数据排序的知识。
2025-09-18
SPSS数据透视表在哪 SPSS数据透视表怎么做
在数据分析领域,我们如何查看多种数据的汇总情况呢?SPSS的图表编辑功能可以计算、分析、统计各类数值,并用三线透视表的方式来清晰呈现测量结果,这就需要研究者熟悉图表操作的功能,能够对表格的初始格式进行修改与调整。本文以SPSS数据透视表在哪,SPSS数据透视表怎么做这两个问题为例,给大家介绍一下SPSS数据透视表的相关知识。
2025-09-18
SPSS自定义表格怎么设计 SPSS自定义表格行列表头设置方法
对于进行数据分析的研究者来说,SPSS设置的初始表格需要在格式上进行进一步的调整和规范,也就是需要SPSS用户自行设置和修改图表格式,借助SPSS图表编辑的工具来操作。本文以SPSS自定义表格怎么设计,SPSS自定义表格行列表头设置方法这两个问题为例,给大家介绍一下SPSS自定义表格的相关知识。
2025-09-18
SPSS数据加权有什么用 SPSS数据加权与不加权的区别
数据加权是数据分析过程中非常实用的一种数据分析技巧,根据每一项个案要素的重要程度,合理调整它们的总体占比,随后再进行计算,就能得到更加精准的分析结果。今天我就以SPSS数据加权有什么用,SPSS数据加权与不加权的区别这两个问题为例,来向大家讲解一下数据加权的相关知识。
2025-09-18
SPSS线性回归如何构建 SPSS线性回归自变量筛选方法
在数据分析领域,当自变量类型为定序或者定距变量的时候,我们可以借助SPSS线性回归的方法来建立变量之间函数变化关系的模型,这适用于自变量与因变量呈线性关系的情况,有助于后续的数据划分和定义。本文以SPSS线性回归如何构建,SPSS线性回归自变量筛选方法这两个问题为例,给大家介绍一下SPSS线性回归的相关知识。
2025-09-18

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: