IBM SPSS Statistics 中文网站 > 使用技巧 > IBM SPSS Statistics常用图表附例演示讲解

IBM SPSS Statistics常用图表附例演示讲解

发布时间:2021-08-09 13: 23: 59

IBM SPSS Statistics的图表功能非常强大,囊括了直方图、散点图、饼图、折线图、茎叶图等常用的图表,不仅可用于数据的预先分析,而且其图表的格式美观,更可直接在展示报告中使用,减少后续作图的时间。

本文将会介绍IBM SPSS Statistics中的几个实用的图表类型,分别是SPSS散点图、饼图、直方图与P-P图。

一、散点图

SPSS的散点图是运用直角坐标轴展示因变量随着自变量变化而变化的图表,可直观地展示自变量与因变量的数据分布特点,并预先了解其分布的趋势。

以图1所示的销售额与客流量的数据为例。

图1:销售额与客流量数据
图1:销售额与客流量数据

绘制以客流量为自变量,销售额为因变量的散点图。如图2所示,可以观察到,销售额随着客流量的增长而增长,呈现线性正相关的趋势。根据数据分布特点,我们可进一步构建数据的线性回归方程。

图2:销售额与客流量散点图
图2:销售额与客流量散点图

二、饼图

SPSS的饼图展示的是变量中各数据项目的大小与占比情况,可用于了解数据的分布特点、检查数据的代表性等。

比如,在如图3所示的学生抽样分数数据中,我们需要检查数据是否具有代表性,即各班抽样的个案数是否符合总体占比。

图3:学生分数抽样
图3:学生分数抽样

根据以上数据制作以班级作为变量的饼图,如图4所示,可以看到,二班与一班抽样的个案数占比较大,三班则相对较少,需根据实际的班级人数调整抽样的占比。

图4:班级组成
图4:班级组成

三、直方图

SPSS的直方图是以纵向或横向的条纹表示数据分布情况的图表,常用于对比不同类别的数据分布。

比如,同样是使用以上学生分数抽样为例制作直方图,如图5所示,以分数作为Y轴,性别个案计数作为X轴,可得到不同性别学生的分数分布情况。

图5:不同性别的分数分布
图5:不同性别的分数分布

除了以上横向条纹结构外,直方图也常使用纵向条纹的结构。在常用的正态性检验中,我们就经常会使用到标准化残差的直方图,检查数据的正态性。

图6:标准化残差直方图
图6:标准化残差直方图

四、P-P图

说到检查数据的分布(比如上文所说的正态性),就不得不提到SPSS的P-P图。

P-P图,实际上是预期累积概率与实测累积概率的散点图,当以上两个变量的数据点位于一条直线上时,表示该数据符合指定的分布

我们以销售额的数据为例。

图7:销售额与客流量数据
图7:销售额与客流量数据

制作销售额的正态P-P图,可观察到其预期累积概率与实测累积概率是位于一条直线上的,说明销售额数据的分布符合正态分布。

在进行方差分析时,我们往往要先检查数据是否符合正态分布,通过直方图、P-P图可快速检查数据分布的特点。

图8:P-P图
图8:P-P图

五、小结

综上所述,IBM SPSS Statistics丰富而实用的图表功能,可帮助我们快速地了解数据分布的特点,并据此选择适合的分析方法。除此之外,SPSS图表美观的格式、清晰的图例说明,也减少了后续作图的繁琐,可直接用于报告文件中。

作者:泽洋

展开阅读全文

标签:SPSS

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
spss怎么做逐步回归分析 逐步回归分析spss结果解读
spss怎么做逐步回归分析?逐步回归分析是多元线性回归分析的一种,可通过spss回归分析中的“步进”法来做逐步回归分析。本文会运用例子演示逐步回归分析步骤,并进行逐步回归分析spss结果解读。
2022-05-12
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
最新文章
spss赋值后为什么显示不出来 spss赋值后为什么空白不显示
在现代数据分析中,SPSS(统计产品与服务解决方案)被广泛应用于社会科学、市场研究和健康科学等领域。尽管其功能强大,但在实际操作中,用户可能会遇到一些问题,例如赋值后数据不显示或空白。本文将探讨这些问题,并提供解决方案。
2024-06-14
spss异常值设置在哪里操作 spss异常值筛选后如何处理
在数据分析过程中,异常值是一个常见的问题,它可能会对分析结果产生影响。因此,正确处理异常值是非常重要的。本文将探讨SPSS如何处理异常值的方法。关于SPSS异常值设置在哪里操作,SPSS异常值筛选后如何处理的内容,本文向大家作简单介绍。
2024-05-22
spss去除无效数据方法 spss去除极端值方法
统计学是一门旨在收集、分析和解释数据的学科。在统计学中,数据的准确性和有效性至关重要。然而,有时候我们会遇到无效数据,这些数据可能是错误的、缺失的或者不完整的,它们会对统计结果产生严重的影响。使用SPSS对数据进行统计时,也常常会面对这些问题,关于SPSS去除无效数据方法,SPSS去除极端值方法的内容,本文向大家作简单介绍。
2024-05-08
spss异常值处理办法 spss异常值检验步骤
SPSS异常值检查是数据分析中一个非常重要的步骤。异常值指的是数据集中与其他观测值明显不同的数值。这些异常值可能会对统计分析结果产生影响,使用SPSS进行统计分析前,要对数据进行简单分析,例如查看有无缺失值,进行异常值检验等。有关SPSS异常值处理办法,SPSS异常值检验步骤的内容,本文向大家作简单介绍。
2024-04-24
spss筛选变量不能共线 spss筛选出没有缺失值的样本方法
SPSS是一种强大的统计分析软件,广泛应用于各种研究领域。在进行数据分析时,研究人员经常会遇到共线性问题。共线性是指自变量之间存在高度相关性的情况,这可能会导致模型不稳定、参数估计不准确甚至无法得出有效的结论。因此,共线性诊断和筛选变量在SPSS中变得尤为重要。有关SPSS筛选变量不能共线,SPSS筛选出没有缺失值的样本方法的内容,本文向大家作简单介绍。
2024-04-17
spss筛选功能在什么地方 spss筛选怎么做
SPSS软件是一款被广泛应用于数据分析和统计学习领域的工具。在数据处理过程中,筛选是一个非常重要的步骤,它可以帮助用户快速地找到所需的数据并进行进一步的分析。SPSS软件提供了强大的筛选功能,使用户能够轻松地筛选出符合特定条件的数据,从而提高数据处理的效率和准确性。SPSS筛选功能在什么地方,SPSS筛选怎么做,本文向大家作简单介绍。
2024-04-10

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: