SPSS > 使用技巧 > 在IBM SPSS Statistics怎么检验变量间是否存在共线性

在IBM SPSS Statistics怎么检验变量间是否存在共线性

发布时间:2021-08-30 11: 31: 10

共线性,指的是线性回归方程中自变量之间存在着高度相关关系而使得方程的预测结果出现偏差。

当模型存在严重共线性时,OLS估计量虽仍可能出现较好的统计显著性,但实际上其预测结果已经失去统计意义。这是因为,自变量的共线性会使参数估计值的方差增大,而变大的方差会增大随机误差项,使预测失去意义。

那么,怎么在IBM SPSS Statistics中检验变量间是否存在共线性?接下来,一起通过实例详细学习一下吧。

一、数据准备

本例使用的是一组包含客流量、销售额与销售量的数据。

图1:销售数据
图1:销售数据

二、线性回归共线性分析

共线性检验是用于线性回归方程的变量检验,因此,需在构建线性回归方程时设置共线性检验。

如图2所示,依次单击分析-回归-线性回归选项。

图2:线性回归
图2:线性回归

在线性回归的设置中,将销售额设置为因变量,将客流量、销售量、所处区域设置为自变量。

图3:变量设置
图3:变量设置

为了检验客流量、销售量、所处区域这三个自变量之间是否存在着共线性。如图4所示,需打开统计设置面板,勾选“共线性诊断”。

图4:共线性诊断
图4:共线性诊断

三、结果解读

线性回归方程的共线性检验设置很简单,但其结果解读就显得复杂一些。

如图5所示,在系数检验表中,可通过共线性统计中的容差与VIF(方差膨胀因子)判断自变量的共线性。

容差与VIF互为倒数关系,当容差(tolerance)<=0.1,说明自变量间共线性严重。当VIF值小于3时,没有共线性问题;当VIF值大于3小于10时,有中等程度的共线性;当VIF值大于10则有很严重的共线性问题。

从图5的结果得出,客流量与销售量之间存在着中等程度的共线性,可能会影响回归方程的预测结果。

图5:系数检验
图5:系数检验

除了看容差与VIF值外,还可以参考共线性诊断中的特征值与条件指标。当特征值约等于0、条件指标的值大于10、方差比例接近1时(其中一项符合即可),均可说明存在比较严重的共线性。

根据图6所示的共线性诊断结果,得出以下结论:

1. 维度3和4的特征值约等于0,说明存在比较严重的共线性。

2. 维度3的条件指标接近10,维度4的条件指标大于10,说明存在比较严重的共线性。

3. 客流量与销售量维度4的方差比例接近1,说明存在较严重的共线性。

 图6:共线性诊断

图6:共线性诊断

四、小结

综上所述,进行SPSS线性回归分析时,需要先对自变量进行共线性检验,确保自变量之间不存在高度相关的关系,避免影响到回归模型的预测准确性。

在解读共线性检验结果时,可查看容差、VIF、特征值、条件指标、方差比例的值,并根据不同指标设定的共线性标准判断自变量之间的共线性。

作者:泽洋

展开阅读全文

标签:SPSS共线性

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS酒水行业应用案例
在酒水行业的生产、研发与决策过程中,数据分析是提升效率、优化质量的核心支撑。某知名酒企此前依赖基础工具与外部服务处理数据,面临分析精度低、成本高、流程不规范等问题。通过部署 SPSS 专业数据分析软件,结合控制图、线性回归、主成分分析等多类统计方法,该企业实现了生产过程的精准监控、质量因素的深度挖掘及决策的科学化,显著提升了自主分析能力与业务效益。本文将基于该酒企的实践案例,详细阐述 SPSS 在酒水行业的具体应用。
2025-08-29
SPSS临床应用案例
在医疗科研领域,临床数据的统计分析是验证研究假设、得出科学结论的关键环节。某大型三甲医院作为大学医学院附属医院,其肿瘤科医生兼具临床诊疗与科研教学双重职责,在开展多项临床研究项目时积累了大量数据,亟需高效准确的统计分析工具。SPSS Statistics 凭借操作简便、功能全面的优势,成为该医院处理临床科研数据的首选工具。本文将以该医院肿瘤科的临床研究数据为例,详细阐述 SPSS 在统计描述、统计推断及统计建模中的具体应用,为医疗科研工作者提供参考。
2025-08-29
SPSS假设检验P值怎么算 SPSS假设检验结果怎么看
很多时候人们无法分辨两组数据间的差异是来自于抽样不均匀,还是来自数据总体的差异,这时候可以通过假设检验的方法予以判别。假设检验先假定一个结论,然后使用统计学方法推测是否接受该结论,判别两组数据之间是否存在差异。人工进行假设检验,需要进行大量计算,还需要查表,非常繁琐。借助统计学软件,如SPSS,可以高效的进行假设检验。SPSS假设检验P值怎么算,SPSS假设检验结果怎么看,本文借助实例,向大家作简单介绍。
2025-08-27
SPSS变量名称怎么改,SPSS变量名称非法字符怎么办
变量是我们进行数据分析的主体,变量的类型和名称有很多,我们需要为不同的变量设定不同的名称,才能使SPSS有效地识别并判断出它们之间的数据属性。今天我就以SPSS变量名称怎么改,SPSS变量名称非法字符怎么办这两个问题为例,来向大家讲解一下SPSS中有关变量名称设定的相关知识。
2025-08-27
SPSS数字和字符串的区别 SPSS数字和数值一样吗
常规意义上我们理解的数据,可能只是各式各样的数字,但实际情况下,数值、文字、比值、区间等等,都囊括在数据分析工作的范围之内。今天我就以SPSS数字和字符串的区别,SPSS数据和数值一样吗这两个问题为例,来向大家讲解一下SPSS中不同变量类型之间的差别。
2025-08-27

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: