IBM SPSS Statistics 中文网站 > 使用技巧 > 在IBM SPSS Statistics怎么检验变量间是否存在共线性

在IBM SPSS Statistics怎么检验变量间是否存在共线性

发布时间:2021-08-30 11: 31: 10

共线性,指的是线性回归方程中自变量之间存在着高度相关关系而使得方程的预测结果出现偏差。

当模型存在严重共线性时,OLS估计量虽仍可能出现较好的统计显著性,但实际上其预测结果已经失去统计意义。这是因为,自变量的共线性会使参数估计值的方差增大,而变大的方差会增大随机误差项,使预测失去意义。

那么,怎么在IBM SPSS Statistics中检验变量间是否存在共线性?接下来,一起通过实例详细学习一下吧。

一、数据准备

本例使用的是一组包含客流量、销售额与销售量的数据。

图1:销售数据
图1:销售数据

二、线性回归共线性分析

共线性检验是用于线性回归方程的变量检验,因此,需在构建线性回归方程时设置共线性检验。

如图2所示,依次单击分析-回归-线性回归选项。

图2:线性回归
图2:线性回归

在线性回归的设置中,将销售额设置为因变量,将客流量、销售量、所处区域设置为自变量。

图3:变量设置
图3:变量设置

为了检验客流量、销售量、所处区域这三个自变量之间是否存在着共线性。如图4所示,需打开统计设置面板,勾选“共线性诊断”。

图4:共线性诊断
图4:共线性诊断

三、结果解读

线性回归方程的共线性检验设置很简单,但其结果解读就显得复杂一些。

如图5所示,在系数检验表中,可通过共线性统计中的容差与VIF(方差膨胀因子)判断自变量的共线性。

容差与VIF互为倒数关系,当容差(tolerance)<=0.1,说明自变量间共线性严重。当VIF值小于3时,没有共线性问题;当VIF值大于3小于10时,有中等程度的共线性;当VIF值大于10则有很严重的共线性问题。

从图5的结果得出,客流量与销售量之间存在着中等程度的共线性,可能会影响回归方程的预测结果。

图5:系数检验
图5:系数检验

除了看容差与VIF值外,还可以参考共线性诊断中的特征值与条件指标。当特征值约等于0、条件指标的值大于10、方差比例接近1时(其中一项符合即可),均可说明存在比较严重的共线性。

根据图6所示的共线性诊断结果,得出以下结论:

1. 维度3和4的特征值约等于0,说明存在比较严重的共线性。

2. 维度3的条件指标接近10,维度4的条件指标大于10,说明存在比较严重的共线性。

3. 客流量与销售量维度4的方差比例接近1,说明存在较严重的共线性。

 图6:共线性诊断

图6:共线性诊断

四、小结

综上所述,进行SPSS线性回归分析时,需要先对自变量进行共线性检验,确保自变量之间不存在高度相关的关系,避免影响到回归模型的预测准确性。

在解读共线性检验结果时,可查看容差、VIF、特征值、条件指标、方差比例的值,并根据不同指标设定的共线性标准判断自变量之间的共线性。

作者:泽洋

展开阅读全文

标签:SPSS共线性

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
spss怎么做逐步回归分析 逐步回归分析spss结果解读
spss怎么做逐步回归分析?逐步回归分析是多元线性回归分析的一种,可通过spss回归分析中的“步进”法来做逐步回归分析。本文会运用例子演示逐步回归分析步骤,并进行逐步回归分析spss结果解读。
2022-05-12
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
最新文章
spss均值怎么求 spss均值结果解释
平均值反映了一组数据的集中趋势,在经济社会各个领域都有非常广泛的应用。可以采用很多种方法求解平均值,如带有统计功能的计算器,Excel,SPSS等。关于SPSS均值怎么求,SPSS均值结果解释是什么,本文借助实例,向大家作简单的介绍。
2023-12-04
spss矩阵散点图怎么做 spss矩阵散点图怎么看相关性
随着经济社会的发展,人们愈加重视数据的作用,数据可视化作为应用的热点,已经渗透到生产生活的各个方面。矩阵散点图可以直观反映多变量间相互关系,是数据可视化的具体应用。关于SPSS矩阵散点图怎么做,SPSS矩阵散点图怎么看相关性,本文借助实例向大家作简单介绍。
2023-12-01
spss合并文件的操作步骤 spss合并文件变量怎么配对
可以使用两种方式合并两个数据文件中的数据,一是包含相同个案但不同变量的数据集,另一个是包含相同变量但不同个案的数据集,本文主要向大家介绍如何合并包含相同个案但不同变量的数据集。关于SPSS合并文件的操作步骤是什么,SPSS合并文件变量怎么配对,结合实例,向大家作简单介绍。
2023-11-06
spss计算变量如何计算平方 spss计算变量如何全选
以变量为单位管理并处理数据,是使用SPSS进行建模统计分析的基础。对于有经验的数据分析工作者,这部分工作要占整个统计分析工作的70%以上。管理变量大致包括两部分内容,变量赋值(或称为变量计算)和变量转化。本文主要向大家介绍变量计算的内容,例如SPSS计算变量如何计算平方,SPSS计算变量如何全选。
2023-11-04
spss卡方检验结果线性关联是什么 spss卡方检验结果没有连续性校正
对于两组连续性变量,一般通过回归分析判断两者是否存在相关关系。对于离散型变量,则需借助卡方检验判断两者之间是否存在相关关系。变量数据类型不同,SPSS卡方检验提供的结果形式也有所不同,因此很多用户会感到不解。本文结合实例向大家介绍SPSS卡方检验结果线性关联是什么,SPSS卡方检验结果没有连续性校正原因是什么。
2023-11-02
spss回归分析如何操作 spss回归分析的基本步骤
通过回归分析,可以了解变量间是否存在相互依赖的定量关系。根据方程类型,回归分析可以分为线性回归和非线性回归。根据变量的数目多少,回归分析可以分为一元回归分析和多元回归分析。本文以最简单的一元线性回归分析为例向大家介绍SPSS回归分析如何操作,SPSS回归分析的基本步骤。
2023-10-31

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: