SPSS > 使用技巧 > IBM SPSS Statistics中合并文件添加变量匹配数据

IBM SPSS Statistics中合并文件添加变量匹配数据

发布时间:2021-08-31 11: 58: 11

在运用IBM SPSS Statistics处理数据时,我们可能需要找出一些特定的个案,以观察其数据是否存在异常。当个案数比较少时,只需简单的查找即可完成任务,但当个案数比较多时,逐个查找就会显得十分繁琐。

实际上,通过使用IBM SPSS Statistics的添加变量功能,就可根据个案的唯一编号,轻松匹配出特定个案的数据,实现批量查找个案的功能。接下来,一起来看看怎么实现吧。

一、指定编号的数据匹配补全

如图1所示,我们需要将以下编码对应的数据匹配到数据集中。

图1:需要匹配的编码
图1:需要匹配的编码

由于SPSS只能匹配当前打开的数据集或外部的SPSS格式的数据文件,因此,我们还需将编码匹配用的数据库导入到SPSS中。

图2:用于匹配数据的数据库
图2:用于匹配数据的数据库

以上我们共打开了两个数据集,分别是需要匹配的编码数据集,以及查找匹配数据用的数据库。

接着,依次单击SPSS的数据-合并文件-添加变量选项。

图3:添加变量
图3:添加变量

第一步,在添加变量设置中,选择“打开数据集”,同时选择匹配用的数据库,单击继续。

图4:打开数据集
图4:打开数据集

第二步,在合并方法设置中,选择“基于键值的一对多合并”,并在选择查找表选项中选择匹配用的数据库。

图5:合并方法设置
图5:合并方法设置

第三步,在变量设置中,将所有需要匹配的变量添加到“包含的变量”,同时,将编码设为键变量。

键变量是SPSS进行数据集间匹配的变量,要求其名称与数据类型在两个数据集中必须相同。

图6:变量设置
图6:变量设置

完成匹配后,如图7所示,可以看到,指定编码对应的变量已经匹配完成。

图7:完成数据匹配
图7:完成数据匹配

二、匹配合并缺少的数据

除了查找匹配指定编码的数据外,还可以运用添加变量功能将两份残缺的数据匹配合并成一份完整的数据。

比如,如图8所示,第一份数据包含了大区数据,而第二份数据不包含大区数据,但包含了一些第一份数据未包含的个案,需要将这两份数据匹配合并起来。

图8:需要匹配的数据
图8:需要匹配的数据

具体的操作是,在合并方法设置中,选择“基于键值的一对一合并”。

图9:变量相关性
图9:变量相关性

接着,将两个数据集同时包含的变量都添加为键变量,而将第一份数据特有的大区变量设为“包含的变量”。

图10:变量设置
图10:变量设置

完成运算后,返回数据集,可看到“大区”变量中有一些缺失值,说明这些编码是属于第二份数据独有的一些编码,因为第二份数据不包含大区变量。

图11:完成匹配
图11:完成匹配

四、小结

综上所述,通过应用SPSS的添加变量功能,可完成特定编码在数据库中的数据查找与匹配,以得到特定个案的变量数据。同时,也可完成两份数据的合并匹配,以整合成一份更加完整的数据。

作者:泽洋

展开阅读全文

标签:SPSS变量匹配

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS ROC阈值怎样确定 SPSS ROC阈值选择导致敏感度过低怎么办
说到阈值分析,我们脑海中可能会想到常规的寻找阈值关键临界点的分析方式(例如在医学当中会通过阈值分析的方式来确定药物在病人体内生效的时间临界点)。但是在有些分析场景中,就需要用到ROC曲线作为阈值分析的工具,ROC曲线作为阈值分析中的一个重要工具,可以用来找到数据点位发生明显截断变化的临界点。下面以SPSS为例,给大家介绍SPSS ROC阈值怎样确定,SPSS ROC阈值选择导致敏感度过低怎么办。
2025-12-17
SPSS趋势卡方怎么做 SPSS趋势卡方检验怎么看正相关
趋势卡方是SPSS中检验变量相关性的方法之一,当我们的分析数据中存在多个变量时,就可以使用趋势卡方来检验这些变量是否相互关联、相互影响。检验完毕后,我们也可以根据这些检验结果来选择更加合适的数据分析模型。今天我就以SPSS趋势卡方怎么做,SPSS趋势卡方检验怎么看正相关这两个问题为例,来向大家讲解一下趋势卡方的相关知识。
2025-12-17
SPSS如何计算线性回归 SPSS线性回归数据分析
SPSS是一款功能十分强大的数据分析软件,它将原本复杂的数据分析工作变得简洁化,并通过友好的图像界面满足普罗大众的日常需求。而线性回归是SPSS中最核心的功能模块之一。今天我就以SPSS如何计算线性回归,SPSS线性回归数据分析这两个问题为例,来向大家讲解一下有关线性回归的知识。
2025-12-17
SPSS标准化残差怎么计算 SPSS标准化残差图怎么看
回归分析是SPSS中的重量级分析模型,而其中的标准化残差则是用于观察变量与回归模型之间的适配程度。通过残差值,我们可以找到数据中隐藏的极端个案。在医药学、基因分析等领域,实验人员经常借助标准化残差来找寻诸多分析结果中的特殊个案或异变量,进而对这些特殊的案例进行深度研究。今天我就以SPSS标准化残差怎么计算,SPSS标准化残差图怎么看这两个问题为例,来向大家讲解一下有关标准化残差的相关知识。
2025-12-17
SPSS结果中显著性水平怎么看 SPSS输出查看器内容保存方式
作为一款专业的数据分析软件,SPSS软件凭借着自身专业的功能与过硬的数据分析本领,受到了众多用户的青睐。而在使用SPSS的过程中,显著性分析是大家经常会遇到的问题。显著性分析的主要作用是帮助我们分析两组或者多组变量之间的显著性关系,在得到数据显著性分析的结果后,会需要把数据内容进行保存和留用。接下来给大家介绍SPSS结果中显著性水平怎么看,SPSS输出查看器内容保存方式的具体内容。
2025-12-17
如何将问卷星中的数据导入SPSS 如何对问卷星的数据进行SPSS分析
如今无论是在职场还是大学校园,都经常会用到问卷调查。问卷调查可以帮我们快速收集用户数据,了解用户的需求、关注点,帮助我们从数据中分析出研究方向、需要如何改进。而问卷星是常用的用来收集用户问题的问卷调查软件之一。下面就来说说如何将问卷星中的数据导入SPSS,如何对问卷星的数据进行SPSS分析的相关内容。
2025-12-17

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: