SPSS > 新手入门 > 利用IBM SPSS Statistics进行相关因素分析和显著性分析

利用IBM SPSS Statistics进行相关因素分析和显著性分析

发布时间:2021-12-07 16: 34: 41

电脑型号:华为MagicBook

系统:window10系统

版本:IBM SPSS Statistics 28

上篇教程通过SPSS给大家讲解了论文常用的频数分析、可靠性分析、独立样本T检验三个方式分析。今天将继续通过SPSS给大家讲解主因子分析、最佳尺度回归分析二种方式。

一、主因子分析

所谓主因子分析就是对调查问卷各个指标进行主因子分析,并筛选出对论文有用的指标。比如这里使用教师满意度评分数据,总共包括10个教师,共30条数据,部分数据展示如下图所示。

数据展示

图1数据展示

点击SPSS顶部菜单栏“分析”-“降维”-“因子”,即可打开因子分析窗口。将全部指标加载到变量文本框,并且点击描述按钮,勾选相关性矩阵项目下的“KMO和巴特利特球形度检验。

因子分析

图2 因子分析

点击因子分析右侧的“旋转”按钮,选择直接斜交法或者最优斜交法。

 旋转

图3 旋转

看到KMO和巴特利特检验,如果KMO取样适切性量数小于0.6则不适合进行因素分析。可以看到它值为0.633大于0.6,说明可以进行因素分析。

KMO和巴特利特检验

图4 KMO和巴特利特检验

通过上面验证说明该数据可进行因素分析。总方差解释分析,9个问题抽取了4个因素,4个共同因素的累积量67.697%。

总方差解释

图5 总方差解释

二、最佳尺度回归分析

回归分析按照变量连续与否来划分的话,可以分为两种:一是连续变量的回归分析,主要运用线性回归和逻辑回归。二是不连续变量的回归分析,主要是使用最佳尺度回归分析。

比如一个衣服品牌为了解消费者对本品牌满意度情况,收集到了消费者的满意度、婚姻状况、性别、年龄以及月收入等数据。其中满意度分为三个档次(1表示不满意、2表示一般满意、3表示满意),婚姻状况(1代表未婚,2代表已婚),性别(1代表男性、2代表女性),年龄有七个等级,月收入有4个等级,部分数据展示如下图所示。

数据展示

图6 数据展示

点击SPSS顶部菜单栏“分析”-“回归”-“最佳标度”,即可打开分类回归窗口。将满意度加载到因变量文本框,定义标度为有序;性别、婚姻状况、年龄、月收入加载到自变量文本框,并且将因变量定义标度为有序。

分类回归

图7 分类回归

点击右侧选项按钮,并且初始配置项目中勾选“多个系统性挂起点”。

选项

图8 选项

点击右侧保存按钮,勾选转换后变量模块的“将转换后变量保存到活动数据集”。

保存

图9 保存

点击右侧图按钮,将4个自变量加载到转换图文本框。

图

图10 图

查看“ANOVA”项目,可以看到,显著性值小于0.01,即说明小于0.05,即至少有一个自变量对因变量满意度有显著影响。

表格

描述已自动生成

图11 ANOVA表

查看“系数”项目,可以看到月收入对因变量满意度有显著影响。

系数表

图12 系数表

三、小结

以上是给大家讲解了毕业论文问卷调查数据分析的两种方式,分别是主因子分析和最佳尺度回归分析,从主因子分析我们可以确定哪些指标对于论文写作有作用,从最佳尺度回归分析可以得到哪些自变量对因变量有显著性影响。

作者:独行侠

展开阅读全文

标签:SPSS显著性分析

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS怎么进行Logistic回归 SPSS Logistic回归分类结果不准确怎么办
在数据分析中,Logistic回归常常作为处理二分类因变量的方法,应用场景广泛。使用SPSS进行Logistic回归时,很多朋友常面临分类结果不准确的问题。今天我们将会详细介绍关于SPSS怎么进行Logistic回归,SPSS Logistic回归分类结果不准确怎么办的相关问题。
2025-12-10
SPSS如何随机抽取样本数据 SPSS如何随机选取70%的数据
我们在进行数据分析的工作时,有时为了减少人为误差,避免样本集中在某些特定群体上,所以需要随机抽取样本数据。SPSS既能帮助我们处理不同的数据样本,还可以指定选取相关的数据内容,做到更加精准的数据匹配。接下来给大家介绍SPSS如何随机抽取样本数据,SPSS如何随机选取70%的数据的具体内容。
2025-12-10
SPSS怎么做因子分析 SPSS因子载荷怎么看变量聚类结构
在经济学的领域中,市场如同“一只看不见的手”,在无形之中调节供求关系,并决定商品价格。如果我们将其具体到一件商品的话,究竟是什么因素在影响着它的价格呢?因子分析就可以为我们解答这个问题。在统计学领域,因子分析就是探究这只“看不见的手”的一种分析方法,它旨在揭示观测变量背后的潜在驱动力,正如数理逻辑对于数学成绩的影响,或者品牌形象对于产品销售情况的影响。总的来说,因子分析就是一种探究潜在变量(即潜在因子)与观测变量之间的相关性的方法。下面我以在SPSS中做因子分析的方法为例,给大家介绍一下关于SPSS怎么做因子分析,SPSS因子载荷怎么看变量聚类结构的相关内容。
2025-12-10
SPSS怎样绘制散点图 SPSS散点图趋势线不明显怎么办
散点图是常用的数据分析工具,它能够直观展现变量间的关联情况,还能帮助评估数据间可能存在的潜在关系。在数据分析中,散点图的应用十分广泛。而SPSS作为专业制图软件,可以轻松绘制各种散点图。今天我们将和大家一起探讨关于SPSS怎样绘制散点图,SPSS散点图趋势线不明显怎么办的相关内容。
2025-12-10
SPSS如何导入日期数据 SPSS导入日期数据后格式不对怎么调整
通过对不同时态下物体的发展状态进行分析,我们可以获得一条明确的发展脉络图,借由这份脉络图,我们可以预测事物未来的发展趋势。今天我就以SPSS如何导入日期数据,SPSS导入日期数据后格式不对怎么调整这两个问题为例,来向大家讲解一下SPSS中关于日期数据的知识。
2025-12-10
SPSS怎样生成描述性统计表 SPSS统计表结果格式不规范怎么办
在数据分析的过程中,描述性统计表是其中不可缺少的重要部分。由于能够准确地描述出需要分析的数据样本和统计内容,描述性的统计表在不同的统计场景中也有广泛的应用(例如对数据样本进行集中趋势分析和离散性分析)。所以随着精准数据分析的需求不断提升,越来越多的用户会选择采用描述性统计分析的方式来分析数据。下面以SPSS为例,给大家介绍SPSS怎样生成描述性统计表,SPSS统计表结果格式不规范怎么办的具体内容。
2025-12-10

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: