
发布时间:2022/07/06 11:27:42
品牌型号:微星 gl62m
系统:Windows 10
软件版本:IBM SPSS Statistics
回归分析是论文中最常用的研究假设检验技术,想知道自变量X对因变量Y的如何影响、作用方式,最常用的是线性回归,接下来就给大家介绍一下线性回归分析的意义,线性回归分析spss结果解读。
线性回归是利用数理统计中的回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。
线性回归是回归分析中第一种经过严格研究并在实际应用中广泛使用的类型。这是因为线性依赖于其未知参数的模型比非线性依赖于其未知参数的模型更容易拟合,而且产生的估计的统计特性也更容易确定。其表达形式为y = w'x+e,e为误差服从均值为0的正态分布。
线性回归分析主要用来分析观测值x与y并拟合出一个合理的模型,当出现一个新的数值时,可以通过这个模型来预测出其对应数值。在高层次的运用时,线性回归分析可以用来量化y与大量x之间相关性的强度,推测与y不相关的x及部分冗余信息。
大部分人操作完回归分析后的结果如下图所示:
样本的基础统计量
图3:基础统计量
直方图:如果残差直观上满足正态性,说明模型构建的好
正态P-P图,数值分布接近于直线,说明残差的正态性良好,回归方程满足残差正态分布的假设。
ANOVA分析:回归方程的显著性L大于0.001,小于0..025,即在显著性检验的结论错误率低于2.5%时,可以拒绝原假设,即身高与体重之间存在着显著的线性回归关系。
图6:anova
R方自变数能够解释依变数的变异量,论文报告中要报告调整后的R方。.432表示共同解释43.2%的变异量,从中可以看出回归方程的预测准确度不高,可能是因为样本量比较少的原因,也可能是因为还有其他影响因变量的因素。
系数检验结果:其拟合的回归方程可根据下表写出
如果回归分析出现各类异常,可能存在异常值,可以在散点图里可观察到是否有异常值存在。当发现异常值时,首先应该回到数据中,检查是否存在数据收集、录入方面的错误,如果发现此类错误,则应及时更正为正确的数据,并且再次检测异常值,若数据的收集与录入是正确的,但是仅有极个别的异常值,而且经过调研人员的探讨,剔除数据不会对最终的研究结果有很大的影响,那么可以剔除此数据。
四、总结
以上就是这次带来的线性回归分析的意义,线性回归分析spss结果解读操作步骤的相关内容了。IBM SPSS Statistics是一款功能强大的数据分析软件,通过不断学习这款软件,会大大提升我们在数据分析时的应用效率,想了解更多关于IBM SPSS Statistics的内容,欢迎访问IBM SPSS Statistics中文网站。
读者也喜欢这些内容:
spss pearson相关性分析步骤 spss pearson相关性分析结果怎么看
Pearson(皮尔逊)相关性指的是联合分布服从二维正态分布的随机变量X,Y之间的简单线性相关关系,X,Y之间的相关关系由简单相关系数r表示。利用IBM SPSS Statistics可以非常快速地完成两个随机变量X,Y间的Pearson(皮尔逊)相关性分析,SPSS Pearson相关性分析步骤是什么,SPSS Pearson相关性分析结果怎么看,本文结合实例,向大家做简单的介绍。...
阅读全文 >
spss线性回归怎么画图 spss线性回归显著性怎么看
通过线性回归分析,我们可以了解两组变量间是否存在线性相关关系,以及相关关系是否具有统计学意义。借助SPSS我们不仅可以进行线性回归分析,还可以绘制回归曲线,直观地展示两组数据间的相关关系。SPSS线性回归怎么画图,SPSS线性回归显著性怎么看,本文结合实例向大家做简单的介绍。...
阅读全文 >
spss散点图怎么看线性关系 spss散点图如何添加辅助线
当不需要对线性回归分析进行统计学检验时,我们可以利用SPSS图形绘制功能,对数据进行简单的线性回归分析。在SPSS散点图绘制功能中,可以绘制回归曲线,查看数据线性回归方程,并且可以查看线性回归系数R。SPSS散点图怎么看线性关系,SPSS散点图如何添加辅助线?本文结合实例,向大家做简单的介绍。...
阅读全文 >
spss线性回归怎么做 spss线性回归图的绘制
通过相关性分析,我们可以了解一个变量是否随另一个变量的变化而变化,但是无法通过控制一个变量,对另一个变量产生影响。通过线性回归分析,可以建立两个变量间的回归方程,较为精确的解释两个变量变化的关系,从而达到控制的目的,我们一般通过专业的统计分析软件进行线性回归分析,如SPSS。关于SPSS线性回归怎么做,SPSS线性回归图的绘制步骤是什么的问题,本文结合实例向大家做简单的介绍。...
阅读全文 >