SPSS > 使用技巧 > spss重复测量方差分析交互作用 spss重复测量方差分析的结果怎么解释

spss重复测量方差分析交互作用 spss重复测量方差分析的结果怎么解释

发布时间:2022-06-02 15: 55: 23

品牌型号:联想GeekPro 2020

系统: Windows 10 64位专业版

软件版本: IBM SPSS Statistics

spss重复测量方差分析交互作用,当因素间存在交互作用时,一个因素的单独效应会随着另一因素变化而改变,spss重复测量方差可研究此类型的交互作用。spss重复测量方差分析的结果怎么解释?本文将会通过实例具体解释分析结果。

一、spss重复测量方差分析交互作用

spss重复测量方差分析是一种对因素进行多次测量分析,并研究因素间交互作用的分析方法,其交互作用指的是,数据中的某个因素的单独效应(或水平)会随着另一因素的单独效应(水平)发生变化。

在spss重复测量方差分析中会涉及到某个因素的单独效应、因素间的交互效应的研究。以图1的数据为例,该样本数据包含了两组数据,分别是int与con,而每组数据包含了三组不同时间点测量的数据。

图1:分析数据
图1:分析数据

 

通过应用spss的重复测量分析方法,如图2所示,为重复测量定义因子,在主体内因子中设置组别与时间两组因子,组别包含了两个水平,时间包含三个水平,可分析时间的单独效应、时间与组别的交互效应。

图2:两个主体内因子
图2:两个主体内因子

 

二、spss重复测量方差分析的结果怎么解释

由于spss重复测量方差分析会涉及到多个因素以及水平的分析,因此,其spss分析结果图表也会比较丰富,而我们在解读结果的过程中,重点是要解读因素的单独效应与交互效应结果。

首先,查看球形度检验结果,在数据满足球形检验假设的前提下,可从主体间效应检验查看不同因素的单独效应、交互效应影响的显著性。

如图3所示,本例数据的球形度检验显著性为0.061>0.05,说明不能拒绝数据符合球形的假设,即数据满足球形假设,可进一步查看主体间效应检验结果。

图3:球形检验
图3:球形检验

 

而从如图4所示的主体内效应检验结果看到,

1.月份代表的时间单独效应具有统计学意义,检验效果显著,说明数据会随着时间的变化而变化。

2.组别代表的组间单独效应具有统计学意义,检验效果显著,说明不同组的数据间存在差异。

3.时间与组别的交互效应具有统计学意义,检验效果显著,说明随着时间的不同,不同组别的数据会有差异。

图4:主体内效应检验
图4:主体内效应检验

 

三、spss双因素重复测量与单因素重复测量的区别

除了将重复测量分析应用于多个因素的研究外,spss重复测量分析还可应用于简单的单因素分析中,比较常用的是时间因素的分析,比如测量使用不同时长下药物的效果、测量不同时间点的溶解程度等。

单因素重复测量分析更重在分析因素的单独效应,并可通过“成对比较”,分析因素不同水平的差异。比如图5所示,定义一个月份的主体内因子。

图5:单因素测量分析
图5:单因素测量分析

 

然后,检验月份的单独效应是否具有显著性,可从数据观察到,其显著性P值小于0.05,单独效应显著,说明不同月份间的数据存在差异。

图6:组别比较
图6:组别比较

 

而从成对比较中,可观察到两两月份之间存在着差异。

图7:时间比较
图7:时间比较

 

四、小结

以上就是关于spss重复测量方差分析交互作用,spss重复测量方差分析的结果怎么解释的相关内容。Spss重复测量方差分析需要关注因素的单独效应以及因素间的交互效应,可研究因素的不同水平对另一因素产生的影响。

 

作者:泽洋

展开阅读全文

标签:SPSSIBM SPSS StatisticsSPSS教程

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS里面如何快速将字符赋值 SPSS文字变量赋值
在数据分析领域,如果想要对多属性或多选项的变量进行分析,研究者需要对一些文字变量进行赋值来将字符串改为数字格式,便于后续的问卷数据统计和测量。今天,我们以SPSS里面如何快速将字符赋值,SPSS文字变量赋值这两个问题为例,带大家了解一下SPSS字符赋值的相关知识。
2025-06-30
SPSS因子负荷系数表怎么做 SPSS因素负荷是哪个值
在数据分析领域,SPSS因子分析可以从众多变量中提取出少数因子,这种方法一般是通过构建的指标体系计算出因子得分,而知晓因子负荷系数可以帮助研究者优化实验数据,从而实现对繁杂数据的标准化处理。今天,我们以SPSS因子负荷系数表怎么做,SPSS因素负荷是哪个值这两个问题为例,带大家了解一下SPSS因子负荷的相关知识。
2025-06-30
SPSS如何把多个题项变成一个维度 SPSS如何把多个题项分析出来
在回收调查问卷的数据后,研究者通常会对问卷中相关性较高的题项进行合并,这就需要运用到SPSS转换和计算变量的函数指令方法,从而使多个问卷题项变成一个维度来计算均值结果。本文以SPSS如何把多个题项变成一个维度,SPSS如何把多个题项分析出来这两个问题为例,带大家了解一下SPSS多题项合并的知识。
2025-06-27
SPSS方差齐性检验操作误区 SPSS方差齐性检验结果解读
方差齐性检验是用来检查不同数据之间的方差是否存在相似性,通过这种分析方法,可以判断不同组别数据的一致性。今天我就以SPSS方差齐性检验操作误区,SPSS方差齐性检验结果解读这两个问题为例,来向大家讲解一下SPSS当中方差齐性检验工具的操作技巧。
2025-06-27
SPSS交叉表行列优化技巧 SPSS交叉表格中行列层是什么意思
交叉表是用于分析两个或多个变量之间是否存在相互关联的验证图表,是一种非常简单且高效的数据分析工具,广泛应用在医疗、市场调研、商业分析等诸多领域。今天我就以SPSS交叉表行列优化技巧,SPSS交叉表格中行列层是什么意思这两个问题为例,来向大家讲解一下交叉表分析工具的相关知识。
2025-06-26
SPSS连续变量和分类变量的区别 SPSS连续变量和分类变量的关系
IBM SPSS Statistics是一款功能强大的统计软件,具备如数据处理、数理统计、分析预测,数据可视化等功能。借助IBM SPSS Statistics,我们可以快速完成数据分析工作,避免大量的数学计算,大大提高工作效率。使用IBM SPSS Statistics,首先要注意数据类型的设置,数据类型设置不正确,可能导致统计出现错误。SPSS连续变量和分类变量的区别,SPSS连续变量和分类变量的关系是怎样的,本文向大家作简单介绍。
2025-06-26

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: