IBM SPSS Statistics 中文网站 > 使用技巧 > spss均值比较的意义 spss均值比较分析详细步骤

spss均值比较的意义 spss均值比较分析详细步骤

发布时间:2022/06/23 11:39:21

品牌型号:联想GeekPro 2020

系统: Windows 10 64位专业版

软件版本: IBM SPSS Statistics

spss均值比较的意义,均值比较可比较不同组的数据集中趋势,以分析其中的差异。spss均值比较分析详细步骤,spss均值分析包括均值比较、单样本t检验、独立样本t检验等,本文会举例说明详细步骤。

一、spss均值比较的意义

spss均值比较,也就是平均值的比较,是对不同组别数据的集中趋势进行比较,以研究不同组别的均值间是否有差异,从而判断两组数据的集中趋势是否有差异,比如方案A与方案B实施后成果的均值比较,可分析两种方案的效果是否有差异。

spss均值比较可用于单个或多个自变量的均值分析,也可以在过程中检验两组独立样本或同组样本是否来自相同均值总体。spss常用的均值分析方法包括:

1.均值比较:运算数据的描述统计量

2. 单样本t检验:检验单个样本的均值与给定的检验值之间是否有显著差异。

3.独立样本t检验:检验两组独立样本均值之间是否有显著差异。

4.配对样本t检验:检验一组样本的两个变量之间是否有显著差异。

5.单因素ANOVA检验:单一控制变量下不同组别样本间均值是否有显著差异。

均值分析
均值分析

 

二、spss均值比较分析详细步骤

那么,spss均值比较分析怎么做?接下来,以简单的单样本t检验为例,演示一下均值比较分析详细步骤。

如图1所示,本例使用的是一组样本身高数据,以账号标注个案,以样本身高数据作为检验变量。

示例数据
示例数据

 

接着,依次单击spss的分析-比较平均值-单样本t检验。

单样本t检验
单样本t检验

 

1、设定变量与检验值

单样本t检验的分析比较简单,通过设置检验变量与检验值,即可进行检验运算。检验变量,即需要检验均值与给定的检验值之间是否有显著差异的变量,通过均值与检验值的比较,可检验差值的显著性。

本例中,根据研究目的,将“身高”选入“检验变量”列表框,并将检验值设置为153(举例数据)。

选择变量
选择变量

 

2、设置置信水平

接着,打开“选项”按钮,设置置信区间百分比,设置95%置信区间能确保更大的准确性。如果检验结果不显著,可尝试设置90%置信区间,但能解释差异的准确度会降低。

单样本T检验选项
单样本T检验选项

 

3、结果分析解读

检验结果如图6所示,显著性P值为<0.05(95%置信水平),说明样本身高均值与检验值之间的差异显著,有统计学意义,而其“平均值差值”为0.865,说明样本身高显著高于检验值。

依照检验结果,我们就可以进一步探讨样本个案的特征,以找到引起样本身高高于检验值的原因。

结果显示显著性差异
结果显示显著性差异

 

三、单因素ANOVA方差分析是均值分析吗

单样本t检验、独立样本t检验、配对样本t检验的均值分析,理解起来比较简单,都是对一组或多组样本的均值进行比较,而相对而言,单因素ANOVA方差分析就显得有点不同。

单因素方差分析会涉及到因子对变量的影响,研究的是因素对所研究变量均值产生的影响是否有差异。因此,与以上t检验不同的是,单因素方差分析会涉及到控制变量(因子)的影响分析。

同样以样本身高为例,如图7所示,我们加入了“饮用牛奶类型”这一因子,以检验饮用不同牛奶会不会对样本身高的均值产生影响,其影响是否有显著性。

单因素ANOVA方差分析
单因素ANOVA方差分析

 

从图8的ANOVA检验结果看到,其显著性P值为0.176>0.05,无法拒绝原假设,也就是说,“饮用牛奶类型”这一因素对样本身高均值的影响无显著性。

结果分析
结果分析

 

四、小结

以上就是关于spss均值比较的意义,spss均值比较分析详细步骤的相关内容。spss均值比较检验的是不同组别样本均值差异的显著性,包括单样本t检验、独立样本t检验、配对样本t检验、单因素ANOVA方差分析等。

 

作者:泽洋

SPSS Statistics
云版首发!秒杀只需1分钱!
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
最新文章
1分钱秒杀!云版大数据统计与应用分析解决方案上线
在经历了数个月的悉心筹备后,云版大数据统计与应用分析解决方案终于要和大家见面了!为了让更多人能体验到本服务,我们特别发起了限量1分钱秒杀活动。
2022-11-24
spss缺失值分析步骤 spss缺失值分析结果怎么看
在数据调查过程中,工作人员常常会遇到数据缺失现象。数据缺失分为三类,随机缺失,完全随机缺失,非随机缺失。无论哪种缺失,都可能导致严重的问题,或者大大降低统计的精度。利用IBM SPSS Statistics可以对数据缺失值进行分析,关于SPSS缺失值分析步骤是怎样的,SPSS缺失值分析结果怎么看的问题?本文结合实例,为大家做简单介绍。
2022-11-24
spss标签值不显示 spss标签值乱码
使用IBM SPSS Statistics进行统计分析的过程中,为了工作便利,常常会为变量设置标签。在设置标签过程中,常常会遇到各种问题,如SPSS标签值不显示,SPSS标签值乱码等问题,这些问题产生的根源是什么?如何解决?本文向大家做简单介绍。
2022-11-21
IBM SPSS Statistics云版本登录使用教程
感谢您订阅IBM SPSS Statistics云版本服务,IBM SPSS Statistics云版本是由思杰马克丁+IBM+阿里云联合推出,帮助用户解决短时间使用正版软件的需求,提供周付费、月付费两种购买模式,性价比极高。那么在购买了IBM SPSS Statistics云版本之后,应该如何登陆使用呢,本篇教程就来告诉大家使用方法。
2022-11-23
spss中t值和p值是什么意思 spss中t值和p值的关系
在统计分析过程中,常常会遇到这样的情况:检验两个相关的样本是否来自具有相同均值的总体,就会用到t检验。t检验(Student's t test),主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布, t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。利用IBM SPSS Statistics统计分析软件进行t检验可以避免繁杂的统计学计算,快速给出结果,供用户分析。SPSS中t值和p值是什么意思,SPSS中t值和p值的关系是什么,本文结合实例,向大家做简单的介绍。
2022-11-16
spss pearson相关性分析步骤 spss pearson相关性分析结果怎么看
Pearson(皮尔逊)相关性指的是联合分布服从二维正态分布的随机变量X,Y之间的简单线性相关关系,X,Y之间的相关关系由简单相关系数r表示。利用IBM SPSS Statistics可以非常快速地完成两个随机变量X,Y间的Pearson(皮尔逊)相关性分析,SPSS Pearson相关性分析步骤是什么,SPSS Pearson相关性分析结果怎么看,本文结合实例,向大家做简单的介绍。
2022-11-14

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容:

咨询热线

在线咨询

限时折扣