IBM SPSS Statistics 中文网站 > 使用技巧 > 如何用spss做模糊聚类分析 模糊聚类分析的优缺点

如何用spss做模糊聚类分析 模糊聚类分析的优缺点

发布时间:2022-06-27 11: 13: 52

品牌型号:联想GeekPro 2020

系统: Windows 10 64位专业版

软件版本: IBM SPSS Statistics

如何用spss做模糊聚类分析?我们可使用spss分类分析中的系统聚类分析法进行模糊聚类分析。模糊聚类分析的优缺点,其优点是在未知聚类种类的情况下,可结合相关知识探索分类,缺点是无确定的聚类结果,需结合相关知识分析。

一、如何用spss做模糊聚类分析

模糊聚类分析是一种引入模糊数学原理的聚类分析方法,包括系统聚类分析法与非系统聚类分析方法,spss可用于系统聚类分析,常用于分析一些模糊的数据分类问题,相比于k均值、两步聚类等,其结果拥有不确定性,可结合相关行业知识、以往的数据分析结果来确定聚类数量与结果。

接下来,我们以一组商品品类的各项指标数据为例,演示一下如何用spss做模糊聚类分析。

示例数据
示例数据

 

如图2所示,依次点击spss的分析-分类-系统聚类功能。

系统聚类
系统聚类

 

系统聚类分析是利用变量进行迭代距离分析的方法,因此,只需放入聚类分析变量即可分析,其主要的输出结果为冰柱图与树状图(谱系图)。如果要在图表中标注个案的名称,可将个案变量选入“个案标注依据”。

系统聚类设置
系统聚类设置

 

根据本例数据所分析的问题,如图4所示,将指标变量都选入“变量”列表框,将“地区”选入“个案标注依据”,以在图表中显示个案的名称。

变量设置
变量设置

 

系统聚类可在未知聚类数量情况下进行模糊聚类分析,但如果想要限制聚类的数量或事先已知大致的聚类数量,也可通过设置“统计”中“解的范围”来控制聚类数量。

t值
t值

 

系统聚类分析主要是依靠图表来总结聚类结果,默认会运算得出冰柱图,也可加入“谱系图”选项,谱系图又叫树状图,输出结果会更直观。

图设置
图设置

 

在聚类方法上,可选择“瓦尔德法”,并使用“平方欧式距离”测量区间,其他保持默认设置即可。

方法设置
方法设置

 

二、模糊聚类分析的优缺点

模糊聚类分析的优点是对于模糊的数据分析问题,比如产品的质量是很好、比较好、特别好,还是一般等模糊表述,可进行模糊化的聚类,也就是说,可在未知聚类情况、聚类数量等情况下,根据相关分析经验、行业知识等进行结果的解读。

比如图8的分析结果,可根据需要绘制Y轴参考线来确定聚类的数量,将不同账号分成三类、四类、五类,都可以根据分析者的经验调整。

谱系图
谱系图

 

但缺点也比较明显,如果无相关知识,或者研究的问题很新,无其他研究经验可帮助解读数据时,将很难进行聚类结果的确定,其分析结果不及k均值聚类、两步聚类分析清晰,需要进行其他的辅助分析以帮助解释分类结果。

三、怎么解读spss模糊聚类分析结果

接下来,我们继续进行spss模糊聚类分析结果的解读。在上文操作中,我们将聚类数量限制在2-6,因此,在分析结果中可查看到2-6个聚类的分析结果。

从图9的聚类成员结果看到,商品1在2-6个聚类都属于第一个聚类;商品2在2-3个聚类属于第一个聚类,在5-6个聚类属于第二个聚类,如此类推。

聚类结果
聚类结果

 

那么,到底要采用哪个聚类结果?我们需要进一步查看谱系图的结果。

如图10所示,可在谱系图上绘制Y轴参考线辅助分析。参考线与谱系图的横向线条交叉点即为一个聚类,查看该聚类延伸的商品,可判断该聚类是否合理,比如如果都是低价商品,说明该聚类合理。

谱系图
谱系图

 

四、小结

以上就是关于如何用spss做模糊聚类分析,模糊聚类分析的优缺点的相关内容。spss的模糊聚类分析可通过系统聚类分析方法运算,其分析结果具有模糊性,一般需要结合相关知识判断聚类结果的合理性,来进一步确定聚类的数目。

 

作者:泽洋

展开阅读全文

标签:IBM SPSS StatisticsSPSS教程IBM SPSS

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
spss怎么做逐步回归分析 逐步回归分析spss结果解读
spss怎么做逐步回归分析?逐步回归分析是多元线性回归分析的一种,可通过spss回归分析中的“步进”法来做逐步回归分析。本文会运用例子演示逐步回归分析步骤,并进行逐步回归分析spss结果解读。
2022-05-12
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
最新文章
spss均值怎么求 spss均值结果解释
平均值反映了一组数据的集中趋势,在经济社会各个领域都有非常广泛的应用。可以采用很多种方法求解平均值,如带有统计功能的计算器,Excel,SPSS等。关于SPSS均值怎么求,SPSS均值结果解释是什么,本文借助实例,向大家作简单的介绍。
2023-12-04
spss矩阵散点图怎么做 spss矩阵散点图怎么看相关性
随着经济社会的发展,人们愈加重视数据的作用,数据可视化作为应用的热点,已经渗透到生产生活的各个方面。矩阵散点图可以直观反映多变量间相互关系,是数据可视化的具体应用。关于SPSS矩阵散点图怎么做,SPSS矩阵散点图怎么看相关性,本文借助实例向大家作简单介绍。
2023-12-01
spss合并文件的操作步骤 spss合并文件变量怎么配对
可以使用两种方式合并两个数据文件中的数据,一是包含相同个案但不同变量的数据集,另一个是包含相同变量但不同个案的数据集,本文主要向大家介绍如何合并包含相同个案但不同变量的数据集。关于SPSS合并文件的操作步骤是什么,SPSS合并文件变量怎么配对,结合实例,向大家作简单介绍。
2023-11-06
spss计算变量如何计算平方 spss计算变量如何全选
以变量为单位管理并处理数据,是使用SPSS进行建模统计分析的基础。对于有经验的数据分析工作者,这部分工作要占整个统计分析工作的70%以上。管理变量大致包括两部分内容,变量赋值(或称为变量计算)和变量转化。本文主要向大家介绍变量计算的内容,例如SPSS计算变量如何计算平方,SPSS计算变量如何全选。
2023-11-04
spss卡方检验结果线性关联是什么 spss卡方检验结果没有连续性校正
对于两组连续性变量,一般通过回归分析判断两者是否存在相关关系。对于离散型变量,则需借助卡方检验判断两者之间是否存在相关关系。变量数据类型不同,SPSS卡方检验提供的结果形式也有所不同,因此很多用户会感到不解。本文结合实例向大家介绍SPSS卡方检验结果线性关联是什么,SPSS卡方检验结果没有连续性校正原因是什么。
2023-11-02
spss回归分析如何操作 spss回归分析的基本步骤
通过回归分析,可以了解变量间是否存在相互依赖的定量关系。根据方程类型,回归分析可以分为线性回归和非线性回归。根据变量的数目多少,回归分析可以分为一元回归分析和多元回归分析。本文以最简单的一元线性回归分析为例向大家介绍SPSS回归分析如何操作,SPSS回归分析的基本步骤。
2023-10-31

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: