IBM SPSS Statistics 中文网站 > 使用技巧 > spssk均值聚类分析步骤 spssk均值聚类分析结果解读

spssk均值聚类分析步骤 spssk均值聚类分析结果解读

发布时间:2022/06/28 10:04:40

品牌型号:联想GeekPro 2020

系统: Windows 10 64位专业版

软件版本: IBM SPSS Statistics

spssk均值聚类分析步骤,spssk均值聚类分析需事先指定聚类数目k,然后再依照该聚类数目进行迭代运算,本文会应用例子演示分析步骤,同时也会进行spssk均值聚类分析结果解读,以加深理解。

一、spssk均值聚类分析步骤

spssk均值聚类分析,与系统聚类、二阶聚类等同属spss的分类分析,目的是将相似的个案归纳总结、分类,以找到个案间的相似点。spssk均值聚类是一种确定性的聚类分析,需事先指定聚类的数量,适用于有指定分类、分类数目固定的情况。

以一组店铺数据为例,目的是应用一些标准指标对店铺进行分类,需要注意的是,k均值聚类只能分析数值型变量,对于字符串变量需重新编码成数值。

示例数据
示例数据

 

打开spss的分析菜单,选择分类中的“K-均值聚类分析”功能。

k均值聚类
k均值聚类

 

第一步:设置变量

本例将会使用标准a、标准b与标准e三个指标进行聚类分析,其中原字符串变量“标准e”已重新编码为数值型变量。

将标准a、标准b与标准e三个变量选入“变量”列表框,将“店铺编码”选入个案标注依据,以区别不同的个案。

第二步:设置聚类数

在左侧变量下方进行“聚类数”设置,该数值需要分析者自定,无固定规则。本例设为2,即运算得出2个聚类。

其他方法、聚类中心等,如无特殊需求,可保持默认设置。

变量设置
变量设置

 

第三步:设置保存新变量

“聚类成员”,是在聚类数目事先设定的情况下(本例为2个聚类),运算每个聚类所包含的个案,而从“与聚类中心的距离”,可看出聚类间的相似度,距离越远就越不相似。

保存新变量
保存新变量

 

第四步:设置统计量

可选择“初始聚类中心”、“每个个案的聚类信息(所属分类、与中心的距离)”,了解初始聚类与最终聚类的差别(如有的话)。

统计值
统计值

 

二、spssk均值聚类分析结果解读

完成以上设置后进行spss运算分析,并进行最后的步骤,解读数据。

如图6所示,根据初始聚类中心与迭代历史记录,以及实现设定的聚类数据2,数据在第二次迭代后,聚类中心不再变动,以此确认2次迭代。

初始聚类中心
初始聚类中心

 

在聚类数目为2的情况下,可将店铺个案归类为图7的“聚类成员”列表。

聚类结果
聚类结果

 

最终运算后,确定最终聚类中心为2,并得到最终聚类中心之间的距离。

最终聚类中心
最终聚类中心

 

其中,聚类1中包含了15个个案,聚类2中包含了7个个案。

每个聚类中的个案数
每个聚类中的个案数

 

三、spssk均值聚类分析的优缺点

spssk均值聚类分析是一种确定性强的聚类分析方法,相对于系统聚类的模糊性,k均值聚类可在指定聚类数目k基础上进行聚类分析,因此可提供确定性的分类信息,但这也决定了k均值聚类不太适合用于模糊性的研究问题。

spssk均值聚类分析优缺点如下:

优点:

1.运算快速、简单

2.可处理大量的个案,相对于系统聚类来说,运算更有效率

3.有确定的聚类数目,结果清晰,无须分析者自行判断

缺点:

1.需要事先设定聚类数目,不适合模糊性研究问题

2.容易受到初值和离群点的影响,可能会造成大量个案归属同一类,而少量极端值归属同一类的情况

3.聚类结果可能无法解释,无法运用分析者经验修正结果

k均值聚类
k均值聚类

 

四、小结

以上就是关于spssk均值聚类分析步骤,spssk均值聚类分析结果解读的相关内容。spssk均值聚类分析适用于确定性分类结果的研究问题,如果是模糊性的研究问题,可采用spss的系统聚类分析,进行探索性的聚类分析。无论是确定性分类,还是模糊性分类,spss都能进行有效地分析。

 

作者:泽洋

标签:IBM SPSS Statistics均值过程分析SPSS教程K均值聚类

读者也访问过这里:
SPSS Statistics
一款功能强大的数据统计分析工具
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
如何通过SPSS对问卷进行效度分析
效度分析是指测量的根据或手段(在问卷中为问卷题目)是否能有效检测所需测量事物的程度,是问卷分析中几乎必须进行的一个环节,效度分析分为内容效度、准则效度和结构效度,问卷分析一般所使用的效度分析一般是结构效度。通过数据分析软件IBM SPSS Statistics(win)的效度分析功能我们可轻松获得关于问卷的效度分析结果,帮助我们更好设计或评估问卷。那么如何通过IBM SPSS Statistics对问卷进行效度分析。
2021-10-26

咨询热线

在线咨询

限时折扣