SPSS > 使用技巧 > spssk均值聚类分析步骤 spssk均值聚类分析结果解读

spssk均值聚类分析步骤 spssk均值聚类分析结果解读

发布时间:2022-06-28 10: 04: 40

品牌型号:联想GeekPro 2020

系统: Windows 10 64位专业版

软件版本: IBM SPSS Statistics

spssk均值聚类分析步骤,spssk均值聚类分析需事先指定聚类数目k,然后再依照该聚类数目进行迭代运算,本文会应用例子演示分析步骤,同时也会进行spssk均值聚类分析结果解读,以加深理解。

一、spssk均值聚类分析步骤

spssk均值聚类分析,与系统聚类、二阶聚类等同属spss的分类分析,目的是将相似的个案归纳总结、分类,以找到个案间的相似点。spssk均值聚类是一种确定性的聚类分析,需事先指定聚类的数量,适用于有指定分类、分类数目固定的情况。

以一组店铺数据为例,目的是应用一些标准指标对店铺进行分类,需要注意的是,k均值聚类只能分析数值型变量,对于字符串变量需重新编码成数值。

示例数据
示例数据

 

打开spss的分析菜单,选择分类中的“K-均值聚类分析”功能。

k均值聚类
k均值聚类

 

第一步:设置变量

本例将会使用标准a、标准b与标准e三个指标进行聚类分析,其中原字符串变量“标准e”已重新编码为数值型变量。

将标准a、标准b与标准e三个变量选入“变量”列表框,将“店铺编码”选入个案标注依据,以区别不同的个案。

第二步:设置聚类数

在左侧变量下方进行“聚类数”设置,该数值需要分析者自定,无固定规则。本例设为2,即运算得出2个聚类。

其他方法、聚类中心等,如无特殊需求,可保持默认设置。

变量设置
变量设置

 

第三步:设置保存新变量

“聚类成员”,是在聚类数目事先设定的情况下(本例为2个聚类),运算每个聚类所包含的个案,而从“与聚类中心的距离”,可看出聚类间的相似度,距离越远就越不相似。

保存新变量
保存新变量

 

第四步:设置统计量

可选择“初始聚类中心”、“每个个案的聚类信息(所属分类、与中心的距离)”,了解初始聚类与最终聚类的差别(如有的话)。

统计值
统计值

 

二、spssk均值聚类分析结果解读

完成以上设置后进行spss运算分析,并进行最后的步骤,解读数据。

如图6所示,根据初始聚类中心与迭代历史记录,以及实现设定的聚类数据2,数据在第二次迭代后,聚类中心不再变动,以此确认2次迭代。

初始聚类中心
初始聚类中心

 

在聚类数目为2的情况下,可将店铺个案归类为图7的“聚类成员”列表。

聚类结果
聚类结果

 

最终运算后,确定最终聚类中心为2,并得到最终聚类中心之间的距离。

最终聚类中心
最终聚类中心

 

其中,聚类1中包含了15个个案,聚类2中包含了7个个案。

每个聚类中的个案数
每个聚类中的个案数

 

三、spssk均值聚类分析的优缺点

spssk均值聚类分析是一种确定性强的聚类分析方法,相对于系统聚类的模糊性,k均值聚类可在指定聚类数目k基础上进行聚类分析,因此可提供确定性的分类信息,但这也决定了k均值聚类不太适合用于模糊性的研究问题。

spssk均值聚类分析优缺点如下:

优点:

1.运算快速、简单

2.可处理大量的个案,相对于系统聚类来说,运算更有效率

3.有确定的聚类数目,结果清晰,无须分析者自行判断

缺点:

1.需要事先设定聚类数目,不适合模糊性研究问题

2.容易受到初值和离群点的影响,可能会造成大量个案归属同一类,而少量极端值归属同一类的情况

3.聚类结果可能无法解释,无法运用分析者经验修正结果

k均值聚类
k均值聚类

 

四、小结

以上就是关于spssk均值聚类分析步骤,spssk均值聚类分析结果解读的相关内容。spssk均值聚类分析适用于确定性分类结果的研究问题,如果是模糊性的研究问题,可采用spss的系统聚类分析,进行探索性的聚类分析。无论是确定性分类,还是模糊性分类,spss都能进行有效地分析。

 

作者:泽洋

展开阅读全文

标签:IBM SPSS Statistics均值过程分析SPSS教程聚类分析K均值聚类SPSS聚类分析SPSS系统聚类分析SPSS聚类分析步骤SPSS软件应用

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS如何导出分析报告 SPSS报表内容丢失怎么修复
数据分析报告作为承载着数据分析结果的重要内容,既起到了数据样本分析总结的作用,又可以将这部分数据分析结果应用到其他的领域和研究当中(可以作为重要的数据样本参考)。所以导出数据分析报告和修复丢失的数据就成为了数据分析中的一个重要环节,下面以SPSS为例,向大家介绍SPSS如何导出分析报告,SPSS报表内容丢失怎么修复的具体内容。
2026-01-14
SPSS协方差结构怎样设定 SPSS协方差结构拟合应如何比较
在数据分析的领域当中,协方差结构是一项重要的分析方式。作为着重分析同一数据集在不同变量之间相互关系的分析法,协方差结构在实际应用的过程中回答了一部分数据点位发生变化的时候,另一部分点位会以什么样的形式跟随变化。而协方差结构的拟合数据同样可以帮助我们观察数据的变化趋势。下面以SPSS为例,给大家介绍SPSS协方差结构怎样设定,SPSS协方差结构拟合应如何比较的具体内容。
2026-01-14
SPSS残差正态怎样检验 SPSS残差正态QQ图应如何判读
每当我们在对采集的数据样本进行回归分析或者方差检验的时候,都需要遵守数据检验的一个前提:模型的残差需要服从近似正态分布的规律。所以说残差的正态分布相当于整个数据样本的底座和基石,没有正态分布的规律,就无法进行后续的正态检验和分析。而在使用SPSS进行残差正态分析的时候,同样会面临如何检验以及判读QQ图的情况。下面给大家介绍SPSS残差正态怎样检验,SPSS残差正态QQ图应如何判读的具体内容。
2026-01-14
SPSS曲线回归分析的基本原理 SPSS曲线回归分析结果解读
我们在对一组数据样本进行分析的时候,曲线回归分析是其中不可缺少的一个环节。曲线回归分析作为数据分析中的一项重要操作,主要在评估数据样本之间的关联度以及相互关系时有着广泛应用,这样可以得到数据样本的整体变化趋势以及评估未来的数据发展周期(例如分析销售额和营销成本之间的关系)。而曲线回归的结果对数据样本测算同样有着重要意义,下面以SPSS为例,给大家介绍SPSS曲线回归分析的基本原理,SPSS曲线回归分析结果解读的具体内容。
2026-01-08
SPSS怎么导出结果为Excel SPSS表格导出后乱码怎么办
SPSS既能够帮助我们进行专业的数据分析(包含了回归分析、线性模型分析和缺失值分析等),又可以把数据分析后得到的报告结果进行保存或导出,便于数据分析结果的引用。下面就以SPSS为例,向大家介绍SPSS怎么导出结果为Excel,SPSS表格导出后乱码怎么办的具体内容。
2026-01-08
SPSS怎么进行描述性统计分析 SPSS均值标准差计算步骤
在统计学当中,描述性分析主要用来对调查样本总体的数据进行相关描述性质的研究(比如用图形的方式描述分析)。而在进行描述性分析的时候,我经常会用到SPSS数据分析软件,这款软件给我提供了许多数据分析的帮助。接下来给大家介绍SPSS怎么进行描述性统计分析,SPSS均值标准差计算步骤的具体内容。
2026-01-08

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: