IBM SPSS Statistics 中文网站 > 使用技巧 > spss层次聚类分析步骤 spss层次聚类分析结果解读

spss层次聚类分析步骤 spss层次聚类分析结果解读

发布时间:2022/06/27 11:07:26

品牌型号:联想GeekPro 2020

系统: Windows 10 64位专业版

软件版本: IBM SPSS Statistics

spss层次聚类分析步骤,层次聚类分析可使用spss的系统聚类分析方法,本文会举例演示分析步骤。spss层次聚类分析结果解读,主要是通过冰柱图与树状图(谱系图)来确定聚类数目,并以此确认各样本的聚类归属。

一、spss层次聚类分析步骤

spss层次聚类分析是一种通过分析样本间的相似性与距离来组成树状图层次结构的分析方法,也称为为系统聚类,可通过spss的系统聚类分析功能获得层次聚类的分析结果。

接下来,通过一组店铺类型的层次聚类分析例子,具体演示spss层次聚类分析步骤。

数据示例
数据示例

 

如图2所示,依次单击spss的分析-分类-系统聚类选项。

系统聚类
系统聚类

 

1.确认分析变量

层次聚类(系统聚类)是通过聚类变量的分析来确定不同样本的相似性,其变量需要是数值型的变量,如果聚类变量中包含字符串变量,需通过重新编码的方式,为字符串上码,将其转换为数值型变量。

不允许添加字符串
不允许添加字符串

 

本例已将字符串变量“标准e”转变为数值型变量,可直接将其选入到“变量”列表框,其他数值型变量也一同选入“变量”。

同时可选入“个案标注依据”,以便在冰柱图、谱系图中查看个案的名称。

变量设置
变量设置

 

2.设置解的范围

由于层次聚类无明确的聚类结果,为了避免聚类的数据过多,可对“解的范围”进行设置,可根据研究预设的分类数目,以往的分析经验等确定解的范围。

本例将范围设置为2-6个聚类数。

解的范围
解的范围

 

3.设置分析图表

在图表设置中,选入谱系图(树状图)与冰柱图,其中冰柱图可设定图表方向,本例使用默认的“垂直”方向。

图表设置
图表设置

 

二、spss层次聚类分析结果解读

接下来,针对以上设置进行spss层次聚类分析结果解读。

首先看到,按照预先设置的“解的范围”,可观察到2-6个聚类数目下,不同店铺分别属于哪个聚类。比如店铺3,在2-4个聚类时,属于第一个聚类,而在5-6个聚类时,属于第三个聚类。

聚类情况
聚类情况

 

得到每个个案在不同聚类数目所属的类别后,接下来,需要进一步确认聚类的树木。层次聚类不能得出确定的聚类数目,需要分析者运用经验自行选择聚类数目。

比如,本例确认5个聚类的结果,如图8所示,可在冰柱图纵坐标的“5”处绘制横向参考线,以此可得到不同店铺分属的聚类。

冰柱图
冰柱图

 

而相似地,也可借助谱系图确定聚类数目,谱系图使用的是距离标度结果,通过绘制X轴参考线,可从参考线与横向树状图线条得到聚类结果,其聚类结果跟冰柱图一致。

谱系图
谱系图

 

三、spss层次聚类与k均值聚类区别

层次聚类与k均值聚类都是常用的聚类分析方法。与spss层次聚类的模糊性不同,k均值聚类具有确定性,可得出确定的聚类数目与聚类中心,因其在初始就会将样本分为k组,并设定k个聚类中心测量各个样本与聚类中心的距离,因此,可得出清晰的聚类结果。

spss层次聚类是借助冰柱图或谱系图进行数据的解读,往往需要加入分析者的分析经验,因此结果具有不确定性。

而k均值的聚类结果,比如图10所示的例子,能得到确定的聚类数量为4,并确定了4个聚类中心的数值,并以数值衡量聚类中心的距离。

k均值聚类结果
k均值聚类结果

 

四、小结

以上就是关于spss层次聚类分析步骤,spss层次聚类分析结果解读的相关内容。spss层次聚类,又称为系统聚类,通过分析各样本分析变量间的距离来得到聚类分析结果,其结果具有模糊性,可通过spss的冰柱图、树状图,以及自身经验、分析问题来确定聚类数目。

 

作者:泽洋

SPSS Statistics
云版首发!秒杀只需1分钱!
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
最新文章
1分钱秒杀!云版大数据统计与应用分析解决方案上线
在经历了数个月的悉心筹备后,云版大数据统计与应用分析解决方案终于要和大家见面了!为了让更多人能体验到本服务,我们特别发起了限量1分钱秒杀活动。
2022-11-24
spss缺失值分析步骤 spss缺失值分析结果怎么看
在数据调查过程中,工作人员常常会遇到数据缺失现象。数据缺失分为三类,随机缺失,完全随机缺失,非随机缺失。无论哪种缺失,都可能导致严重的问题,或者大大降低统计的精度。利用IBM SPSS Statistics可以对数据缺失值进行分析,关于SPSS缺失值分析步骤是怎样的,SPSS缺失值分析结果怎么看的问题?本文结合实例,为大家做简单介绍。
2022-11-24
spss标签值不显示 spss标签值乱码
使用IBM SPSS Statistics进行统计分析的过程中,为了工作便利,常常会为变量设置标签。在设置标签过程中,常常会遇到各种问题,如SPSS标签值不显示,SPSS标签值乱码等问题,这些问题产生的根源是什么?如何解决?本文向大家做简单介绍。
2022-11-21
IBM SPSS Statistics云版本登录使用教程
感谢您订阅IBM SPSS Statistics云版本服务,IBM SPSS Statistics云版本是由思杰马克丁+IBM+阿里云联合推出,帮助用户解决短时间使用正版软件的需求,提供周付费、月付费两种购买模式,性价比极高。那么在购买了IBM SPSS Statistics云版本之后,应该如何登陆使用呢,本篇教程就来告诉大家使用方法。
2022-11-23
spss中t值和p值是什么意思 spss中t值和p值的关系
在统计分析过程中,常常会遇到这样的情况:检验两个相关的样本是否来自具有相同均值的总体,就会用到t检验。t检验(Student's t test),主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布, t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。利用IBM SPSS Statistics统计分析软件进行t检验可以避免繁杂的统计学计算,快速给出结果,供用户分析。SPSS中t值和p值是什么意思,SPSS中t值和p值的关系是什么,本文结合实例,向大家做简单的介绍。
2022-11-16
spss pearson相关性分析步骤 spss pearson相关性分析结果怎么看
Pearson(皮尔逊)相关性指的是联合分布服从二维正态分布的随机变量X,Y之间的简单线性相关关系,X,Y之间的相关关系由简单相关系数r表示。利用IBM SPSS Statistics可以非常快速地完成两个随机变量X,Y间的Pearson(皮尔逊)相关性分析,SPSS Pearson相关性分析步骤是什么,SPSS Pearson相关性分析结果怎么看,本文结合实例,向大家做简单的介绍。
2022-11-14

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容:

咨询热线

在线咨询

限时折扣