IBM SPSS Statistics 中文网站 > 使用技巧 > spss层次聚类分析步骤 spss层次聚类分析结果解读

spss层次聚类分析步骤 spss层次聚类分析结果解读

发布时间:2022-06-27 11: 07: 26

品牌型号:联想GeekPro 2020

系统: Windows 10 64位专业版

软件版本: IBM SPSS Statistics

spss层次聚类分析步骤,层次聚类分析可使用spss的系统聚类分析方法,本文会举例演示分析步骤。spss层次聚类分析结果解读,主要是通过冰柱图与树状图(谱系图)来确定聚类数目,并以此确认各样本的聚类归属。

一、spss层次聚类分析步骤

spss层次聚类分析是一种通过分析样本间的相似性与距离来组成树状图层次结构的分析方法,也称为为系统聚类,可通过spss的系统聚类分析功能获得层次聚类的分析结果。

接下来,通过一组店铺类型的层次聚类分析例子,具体演示spss层次聚类分析步骤。

数据示例
数据示例

 

如图2所示,依次单击spss的分析-分类-系统聚类选项。

系统聚类
系统聚类

 

1.确认分析变量

层次聚类(系统聚类)是通过聚类变量的分析来确定不同样本的相似性,其变量需要是数值型的变量,如果聚类变量中包含字符串变量,需通过重新编码的方式,为字符串上码,将其转换为数值型变量。

不允许添加字符串
不允许添加字符串

 

本例已将字符串变量“标准e”转变为数值型变量,可直接将其选入到“变量”列表框,其他数值型变量也一同选入“变量”。

同时可选入“个案标注依据”,以便在冰柱图、谱系图中查看个案的名称。

变量设置
变量设置

 

2.设置解的范围

由于层次聚类无明确的聚类结果,为了避免聚类的数据过多,可对“解的范围”进行设置,可根据研究预设的分类数目,以往的分析经验等确定解的范围。

本例将范围设置为2-6个聚类数。

解的范围
解的范围

 

3.设置分析图表

在图表设置中,选入谱系图(树状图)与冰柱图,其中冰柱图可设定图表方向,本例使用默认的“垂直”方向。

图表设置
图表设置

 

二、spss层次聚类分析结果解读

接下来,针对以上设置进行spss层次聚类分析结果解读。

首先看到,按照预先设置的“解的范围”,可观察到2-6个聚类数目下,不同店铺分别属于哪个聚类。比如店铺3,在2-4个聚类时,属于第一个聚类,而在5-6个聚类时,属于第三个聚类。

聚类情况
聚类情况

 

得到每个个案在不同聚类数目所属的类别后,接下来,需要进一步确认聚类的树木。层次聚类不能得出确定的聚类数目,需要分析者运用经验自行选择聚类数目。

比如,本例确认5个聚类的结果,如图8所示,可在冰柱图纵坐标的“5”处绘制横向参考线,以此可得到不同店铺分属的聚类。

冰柱图
冰柱图

 

而相似地,也可借助谱系图确定聚类数目,谱系图使用的是距离标度结果,通过绘制X轴参考线,可从参考线与横向树状图线条得到聚类结果,其聚类结果跟冰柱图一致。

谱系图
谱系图

 

三、spss层次聚类与k均值聚类区别

层次聚类与k均值聚类都是常用的聚类分析方法。与spss层次聚类的模糊性不同,k均值聚类具有确定性,可得出确定的聚类数目与聚类中心,因其在初始就会将样本分为k组,并设定k个聚类中心测量各个样本与聚类中心的距离,因此,可得出清晰的聚类结果。

spss层次聚类是借助冰柱图或谱系图进行数据的解读,往往需要加入分析者的分析经验,因此结果具有不确定性。

而k均值的聚类结果,比如图10所示的例子,能得到确定的聚类数量为4,并确定了4个聚类中心的数值,并以数值衡量聚类中心的距离。

k均值聚类结果
k均值聚类结果

 

四、小结

以上就是关于spss层次聚类分析步骤,spss层次聚类分析结果解读的相关内容。spss层次聚类,又称为系统聚类,通过分析各样本分析变量间的距离来得到聚类分析结果,其结果具有模糊性,可通过spss的冰柱图、树状图,以及自身经验、分析问题来确定聚类数目。

 

作者:泽洋

展开阅读全文

标签:IBM SPSS StatisticsSPSS教程快速聚类分析聚类分析

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
spss怎么做逐步回归分析 逐步回归分析spss结果解读
spss怎么做逐步回归分析?逐步回归分析是多元线性回归分析的一种,可通过spss回归分析中的“步进”法来做逐步回归分析。本文会运用例子演示逐步回归分析步骤,并进行逐步回归分析spss结果解读。
2022-05-12
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
最新文章
spss合并文件的操作步骤 spss合并文件变量怎么配对
可以使用两种方式合并两个数据文件中的数据,一是包含相同个案但不同变量的数据集,另一个是包含相同变量但不同个案的数据集,本文主要向大家介绍如何合并包含相同个案但不同变量的数据集。关于SPSS合并文件的操作步骤是什么,SPSS合并文件变量怎么配对,结合实例,向大家作简单介绍。
2023-11-06
spss计算变量如何计算平方 spss计算变量如何全选
以变量为单位管理并处理数据,是使用SPSS进行建模统计分析的基础。对于有经验的数据分析工作者,这部分工作要占整个统计分析工作的70%以上。管理变量大致包括两部分内容,变量赋值(或称为变量计算)和变量转化。本文主要向大家介绍变量计算的内容,例如SPSS计算变量如何计算平方,SPSS计算变量如何全选。
2023-11-04
spss卡方检验结果线性关联是什么 spss卡方检验结果没有连续性校正
对于两组连续性变量,一般通过回归分析判断两者是否存在相关关系。对于离散型变量,则需借助卡方检验判断两者之间是否存在相关关系。变量数据类型不同,SPSS卡方检验提供的结果形式也有所不同,因此很多用户会感到不解。本文结合实例向大家介绍SPSS卡方检验结果线性关联是什么,SPSS卡方检验结果没有连续性校正原因是什么。
2023-11-02
spss回归分析如何操作 spss回归分析的基本步骤
通过回归分析,可以了解变量间是否存在相互依赖的定量关系。根据方程类型,回归分析可以分为线性回归和非线性回归。根据变量的数目多少,回归分析可以分为一元回归分析和多元回归分析。本文以最简单的一元线性回归分析为例向大家介绍SPSS回归分析如何操作,SPSS回归分析的基本步骤。
2023-10-31
spss方差齐性检验如何操作 spss方差齐性检验怎么看方差齐不齐
方差的大小代表了数据分布的离散程度,方差大,数据分布越分散,方差小,数据分布越集中。组间数据分布离散程度差别较大时,是不能进行比较的,此时不能确定两组数据的差异来源于组间还是组内,因此方差齐性检验是进行组间数据比较的基础。关于SPSS方差齐性检验如何操作,SPSS方差齐性检验怎么看方差齐不齐,本文借助实例,向大家作简单介绍。
2023-10-25
spss线性回归图怎么做 spss线性回归图怎么看结果
借助回归分析,我们可以了解到两组变量是否存在具有统计学意义的依赖关系,描述这种依赖关系的方程是什么,方程可以在多大程度上解释因变量的变化。使用SPSS,不仅可以简便的完成回归分析,还可以为变量绘制散点图,便于大家直观的了解变量间关系。关于SPSS线性回归图怎么做,SPSS线性回归图怎么看结果,本文借助实例,向大家做简单的介绍。
2023-10-25

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: