SPSS > 使用技巧 > SPSS评价回归模型拟合优劣 SPSS回归模型结果分析

SPSS评价回归模型拟合优劣 SPSS回归模型结果分析

发布时间:2025-02-12 13: 43: 00

品牌型号:HP Laptop 15

软件版本:SPSS Statistics27

系统:Windows 10

线性回归模型主要是考察变量之间的数量变化关系,通过线性表达式来进行描述进而确定变量之间的影响程度。为了更深入了解掌握变量之间的关联特性,下面我们将通过SPSS数据分析软件,来带大家了解一下SPSS评价回归模型拟合优劣,SPSS回归模型结果分析的相关内容。

一、SPSS评价回归模型拟合优劣

接下来我们将借助SPSS带大家了解一下评价回归模型拟合的优劣。

1、这是一份某连锁咖啡店不同门店的经营数据,下面我们将通过这份数据来研究影响月销售额的因素有哪些,点击【文件】-【打开】,将数据导入至SPSS中。

导入数据
图1:导入数据

2、点击菜单栏中的【分析】选项,在下拉菜单中找到【回归】-【线性回归】选项,打开线性回归对话框,将月销售额添加到因变量框中,将店铺面积、员工数量、店铺位置、周边写字楼数量、月广告投放费用等添加至自变量框中。

线性回归面板
图2:线性回归面板

3、点击右上角的【统计】按钮,勾选估算值、置信区间为95%、模型拟合、R 方变化量、共线性诊断等统计量,在残差分析中勾选【德宾-沃森】检验。

线性回归:统计面板
图3:线性回归:统计面板

4、然后点击【图】按钮,在【线性回归:图】对话框中勾选标准化残差图中的【直方图】、【正态概率图】,可以方便我们检查模型的残差是否符合正态分布。

标准化残差图
图4:标准化残差图

5、点击【继续】回到线性回归面板中,再点击【确定】按钮进行线性回归分析并生成分析结果。

二、SPSS回归模型结果分析

1、下面为模型摘要图,其中R值为0.999,这说明自变量与因变量之间存在很强的正相关关系,R方为0.997,这说明店铺面积、员工数量、店铺位置、周边写字楼数量、月广告投放费用等变量能够解释月销售额99.7%的变化,调整后R方与R方数值比较接近,说明模型没有过度拟合。

模型摘要
图5:模型摘要

2、这是回归标准化残差直方图,从图中我们可以看出回归标准化残差大部分都在0附近,少许残差在1和-2附近,标准差为0.667,表明残差的波动相对较小,这说明线性回归模型的残差分布比较合理。

回归标准化残差直方图
图6:回归标准化残差直方图

3、下图为残差统计图,其中预测值的最小值为最小值为78712.13 ,最大值为200681.81 ,平均值为130500.00 ,标准差为42789.615,从标准差的数值来看数据的离散程度较大;残差的最小值为- 5530.303 ,最大值为2575.758 ,平均值为0 ,标准差为2209.560 ,这说明线性回归模型对月销售额的预测在目前的数据范围内表现较为合理。

残差统计表
图7:残差统计表

通过对SPSS评价回归模型拟合优劣,SPSS回归模型结果分析的介绍,希望帮助大家更熟练的运用SPSS软件来开展数据分析工作,并根据数据结果做出合理的决策。感兴趣的小伙伴可以登录SPSS中文网站进行下载试用。

 

作者:EON

展开阅读全文

标签:SPSS回归分析SPSS多元回归分析

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS均值比较怎么操作 SPSS均值比较参数设置流程
在数据分析领域,如果研究者想要判断两组或多组数据在某一方面是否存在明显差异,可以使用SPSS的t检验、卡方检验等方法进行测量,不仅能得到清晰明确的数据表格查看各类占比情况,还能够据此知晓详细的参数设置情况。今天,我们以SPSS均值比较怎么操作,SPSS均值比较参数设置流程这两个问题为例,带大家了解一下SPSS均值比较的知识。
2025-06-06
SPSS中的sig值为.000 SPSS sig值过大怎么办
在数据分析领域,SPSS的sig值指的是显著性,数值在0.05的规定范围内则表示测算的关系或者差异是显著的,而如果代表显著性的sig数值偏大,则需要考虑实验数据是否匹配或者合适。今天,我们以SPSS中的sig值为.000,SPSS sig值过大怎么办这两个问题为例,带大家了解一下SPSS关于sig数值的相关知识。
2025-06-06
SPSS主成分回归消除多重共线性步骤 SPSS主成分回归系数显著性全是0正常吗
如果需要判断自变量之间是否存在线性相关性,我们可以运用SPSS主成分回归来消除多重共线性,进而剔除高度相关数据来保证后续回归模型的优化改进。今天,我们以SPSS主成分回归消除多重共线性步骤,SPSS主成分回归系数显著性全是0正常吗这两个问题为例,带大家了解一下SPSS回归分析的相关知识。
2025-06-05
SPSS列联表怎么做 SPSS列联表最简单三个步骤
列联表是用于展现两个或多个变量之间相互影响关系的图表,能够很直观地展示出不同变量之间的数据分布状态,从而帮助我们分析变量之间的关联性。今天我就以SPSS列联表怎么做,SPSS列联表最简单三个步骤两个问题为例,来向大家讲解一下SPSS中列联表的相关操作技巧。
2025-06-05
SPSS数据标准化参数选择 SPSS数据标准化处理在信效度之前还是后
参数标准化是一种非常重要的数据预处理方式,我们在进行数据分析时,可以提前对不同特征的参数进行标准化处理,这样在导入数据模型后,就可以获得较为统一且分布合理的分析结果。今天我就以SPSS数据标准化参数选择,SPSS数据标准化处理在信效度之前还是后这两个问题为例,来向大家讲解一下数据标准化处理的相关知识。
2025-06-04
SPSS可视化分组在哪 SPSS可视化分析怎么做
在数据统计领域,SPSS可视化分箱的功能设置不仅对复杂数据进行区间划分,还可以通过条形图和分割线结合的图像方式清晰呈现数据信息。如果研究者想要对多组连续数据进行可视化分析,那么SPSS数据分箱的功能模块是比较重要的学习领域。今天,我们以SPSS可视化分组在哪,SPSS可视化分析怎么做这两个问题为例,带大家了解SPSS数据分箱的相关知识。
2025-06-04

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: