SPSS > 使用技巧 > IBM SPSS Statistics中怎样进行两配对样本的非参数检验

IBM SPSS Statistics中怎样进行两配对样本的非参数检验

发布时间:2021-03-23 11: 17: 26

在推断统计学中,假设检验可分为两类:参数检验和非参数检验,在IBM SPSS Statistics中这两种检验方法均可直接使用。

当样本数据的总体数据分布情况不确定时,我们往往会选择使用SPSS非参数检验的方法,今天小编就为大家介绍一下IBM SPSS Statistics中如何对两配对样本进行非参数检验。

一、样本概述

1

图1:样本数据

小编这里选择的样本案例是某地10个学校开展教学评比活动前后的教学成绩,其中0表示不合格,1表示合格。通过使用SPSS进行分析,可以查看开展教学评比活动前后学校的教学成绩是否存在显著差异。

这时我们对样本的总体情况是不清楚的,在这两个配对对象中,各个数据一一对应,使用非参数检验对样本被处理前后的效果进行比较。

二、非参数检验

1.McNemar变化显著性检验

(1)适用性

这种检验方法是以研究对象自身为对照来进行显著性检验的,仅适用于样本数据均是二值数据的情况,所以可用性较低。

(2)操作

2

图2:非参数检验

在“分析”菜单下,找到“非参数检验”,点击其下“旧对话框”中的“2个相关样本”,可以进入两配对样本的非参数检验。

3

图3:调入变量

将待检验的变量调入到变量对话框中,“活动前”和“活动后”的顺序没有特殊要求,不影响判断结果。

在检验方法中选择“McNemar”检验,如果有特殊需求,还可以进行精确检验和其他设置,一般来说是不需要的,点击“确定”,就可以开始非参数检验了。

(3)结果

4

图4:检验结果

从第一个表中可以看出,活动前合格、活动后也合格的有4个学校,活动前后都不合格的有3个学校。

从第二个表可以看出,显著性检验结果是0.250,大于0.05,所以应该接受原假设,即开展教学活动前后各学校的合格情况没有显著差异。

2.Wilcoxonz符号平均秩检验

(1)适用性

当样本数据不是二值数据的时候,就可以使用这种检验方法。

(2)操作

5

图5:变量设置

这次将活动前后的分数调入变量检验框,并选择下面的第一个检验方法“Wilcoxonz法”,其他设置和第一种方法类似。

(3)结果

6

图6:检验结果

 从结果中可以看出,显著性检验参数是0.008,小于0.005,所以要拒绝原假设,即开展教学活动前后学校的教学成绩有显著性差异。

可以得出,对相同的样本的不同数据对象进行非参数分析时得出的结果可能是不同的,实际上这两个结果并不矛盾,因为成绩的增长性和合格与否没有完全直接的关系,所以两种结果都是可信的。

三、小结

小编这里介绍了IBM SPSS Statistics两种检验两配对样本的方法,分别适用于样本数据是二值数据与不是二值数据的情况,可以解决大部分的此类样本数据分析问题,希望可以对大家有所帮助!

作者:参商

展开阅读全文

标签:IBM SPSS Statistics非参数检验

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS ROC阈值怎样确定 SPSS ROC阈值选择导致敏感度过低怎么办
说到阈值分析,我们脑海中可能会想到常规的寻找阈值关键临界点的分析方式(例如在医学当中会通过阈值分析的方式来确定药物在病人体内生效的时间临界点)。但是在有些分析场景中,就需要用到ROC曲线作为阈值分析的工具,ROC曲线作为阈值分析中的一个重要工具,可以用来找到数据点位发生明显截断变化的临界点。下面以SPSS为例,给大家介绍SPSS ROC阈值怎样确定,SPSS ROC阈值选择导致敏感度过低怎么办。
2025-12-17
SPSS趋势卡方怎么做 SPSS趋势卡方检验怎么看正相关
趋势卡方是SPSS中检验变量相关性的方法之一,当我们的分析数据中存在多个变量时,就可以使用趋势卡方来检验这些变量是否相互关联、相互影响。检验完毕后,我们也可以根据这些检验结果来选择更加合适的数据分析模型。今天我就以SPSS趋势卡方怎么做,SPSS趋势卡方检验怎么看正相关这两个问题为例,来向大家讲解一下趋势卡方的相关知识。
2025-12-17
SPSS如何计算线性回归 SPSS线性回归数据分析
SPSS是一款功能十分强大的数据分析软件,它将原本复杂的数据分析工作变得简洁化,并通过友好的图像界面满足普罗大众的日常需求。而线性回归是SPSS中最核心的功能模块之一。今天我就以SPSS如何计算线性回归,SPSS线性回归数据分析这两个问题为例,来向大家讲解一下有关线性回归的知识。
2025-12-17
SPSS标准化残差怎么计算 SPSS标准化残差图怎么看
回归分析是SPSS中的重量级分析模型,而其中的标准化残差则是用于观察变量与回归模型之间的适配程度。通过残差值,我们可以找到数据中隐藏的极端个案。在医药学、基因分析等领域,实验人员经常借助标准化残差来找寻诸多分析结果中的特殊个案或异变量,进而对这些特殊的案例进行深度研究。今天我就以SPSS标准化残差怎么计算,SPSS标准化残差图怎么看这两个问题为例,来向大家讲解一下有关标准化残差的相关知识。
2025-12-17
SPSS结果中显著性水平怎么看 SPSS输出查看器内容保存方式
作为一款专业的数据分析软件,SPSS软件凭借着自身专业的功能与过硬的数据分析本领,受到了众多用户的青睐。而在使用SPSS的过程中,显著性分析是大家经常会遇到的问题。显著性分析的主要作用是帮助我们分析两组或者多组变量之间的显著性关系,在得到数据显著性分析的结果后,会需要把数据内容进行保存和留用。接下来给大家介绍SPSS结果中显著性水平怎么看,SPSS输出查看器内容保存方式的具体内容。
2025-12-17
如何将问卷星中的数据导入SPSS 如何对问卷星的数据进行SPSS分析
如今无论是在职场还是大学校园,都经常会用到问卷调查。问卷调查可以帮我们快速收集用户数据,了解用户的需求、关注点,帮助我们从数据中分析出研究方向、需要如何改进。而问卷星是常用的用来收集用户问题的问卷调查软件之一。下面就来说说如何将问卷星中的数据导入SPSS,如何对问卷星的数据进行SPSS分析的相关内容。
2025-12-17

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: