IBM Business Partner

IBM SPSS Statistics 中文网站 > 使用技巧 > 如何用SPSS的验证功能淘汰缺失值过多的变量

如何用SPSS的验证功能淘汰缺失值过多的变量

发布时间:2021/06/22

我们进行统计分析时,一般来说数据都或多或少会有缺失值,对于有缺失值的记录,我们可以填入中位数、众数或平均数进行处理,或者直接作为一个新的特征变量,用哑变量来表示。

但是对于缺失值过多的特征变量,为了保证统计的准确性,我们会不得不把这些特征变量从数据中进行剔除淘汰。下面我会通过IBM SPSS Statistics的验证功能,一次性检验所有特征变量的缺失情况,然后对缺失值过多的特征进行删除。

一、设置缺失值验证

下图1是要进行检验的数据,我们可以看到的特征变量数据是存在着一些数据缺失的情况的。

图1:缺失数据展示

第一步:点击“数据”菜单,选择“验证”,然后点击“验证数据”选项。

图2:验证数据

第二步:接下来在“变量”选项,我们往“分析变量”拉入要进行缺失值验证的特征变量,这里我们将除了ID以外的变量全部拉入即可。

图3:拉入分析变量

第三步:切换到“单变量规则”中,点击“定义规则”按钮,输入规则的名称,如“缺失值检验规则”,然后选择要检验的特征变量的类型,可选项有“字符串”、“数字”和“日期”,最后我们需要取消勾选“允许使用用户缺失值”和“允许使用空值”,具体如图4。

图4:定义验证规则

第四步:点击“继续”回到“验证数据”界面中,单击分析变量,在右侧的规则列表中,勾选上我们刚刚建立的“缺失值检验规则”,最后点击“确定”,开始进行缺失值数据检验。

图5:勾选验证规则

二、验证结果

下图6为SPSS进行缺失值规则验证后的验证结果,我们主要看“变量摘要”表格,从表格中可以看到年份这个特征变量,违例数为16,如果其他的特征有缺失值的情况,违例个数也会展示在此表格中。此时我们就可以针对他们的违例数,判断是否缺失数据严重,严重的话就需要将此特征进行剔除。

图6:验证结果

上述就是使用IBM SPSS Statistics的验证功能,一次性验证多个特征变量的缺失值缺失情况的简单教程,SPSS除了缺失值验证功能外,还提供了缺失值分析、缺失值替换等功能,帮助我们更好地进行缺失值处理。关于SPSS的数据验证功能,还有更多更有用的地方,大家可以到IBM SPSS Statistics中文网站上进行了解。

作者署名:包纸

标签:SPSS统计分析

读者也访问过这里:
SPSS Statistics
一款功能强大的数据统计分析工具
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
如何用SPSS计算个人BMI值?
BMI即体重指数,是衡量个人身体质量的一个重要参数,通过判断BMI的数值大小,我们可以判断个人身高与体重是否协调。下面我将用IBM SPSS Statistics来为大家介绍BMI的计算方法。
2021-03-19
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
SPSS进行变量赋值的相关操作
变量和个案是IBM SPSS数据界面很重要的两个部分,可以形象理解为地球仪上的经线和纬线。通俗一点讲数据界面的每一列是一种变量,如年龄性别等。一行中的所有变量又构成了一个个案,本篇文章着重讲解变量,个案就不做过多展开。在图1中有具体的标注,可以看一下变量和个案到底是什么样。
2021-02-23
如何使用SPSS检验数据是否服从正态分布—偏度峰度系数
在《如何使用SPSS检验数据是否服从正态分布—KS检验与Q-Q图》一文中,我们了解了如何使用KS检验、Q-Q图来验证数据的正态性。接下来,本文将会继续讲解如何使用IBM SPSS Statistics的描述统计(偏度峰度系数)、探索统计检验(正态检验)数据的正态性。
2021-01-07
使用SPSS进行回归分析的方法总结
IBM SPSS Statistics 是强大的统计软件平台,SPSS全称Statistical Product and Service Solutions(统计产品与服务解决方案), SPSS可以帮助我们分析并更好地了解数据,以解决复杂的业务和研究问题。如今,SPSS已经被广泛运用于数据分析等各个领域。
2021-03-09
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11