发布时间:2024-11-28 11: 36: 00
品牌型号:HP Laptop 15
软件版本:SPSS Statistics27
系统:Windows 10
当我们需要根据不同特征对数据进行分类时,常常会用到SPSS的决策树分类方法,但很多小伙伴都不知道具体该怎么操作,今天就带大家了解一下SPSS决策树分类怎么做,SPSS决策树分类表解读的相关内容,希望可以对大家有帮助。
一、SPSS决策树分类怎么做
1.首先打开SPSS软件,在菜单栏中选择【文件】-【打开】-【数据】,在弹出的打开数据面板中将需要进行编辑的文件,导入到SPSS中。
2.数据导入成功后,切换到变量视图,检查各个变量的数据类型是否正确,同时查看数据视图中是否有缺失数值等异常情况。
3.在菜单栏中选择【分析】-【分类】-【决策树】,在弹出的决策树对话框中将目标变量“是否购买”选入因变量框,这将用于构建决策树的预测,“年龄、性别、收入水平、职业”等选入自变量框。
4.在“条件”面板中点击【增长限制】设置最大树深度、最小个案数等参数,这些参数可以根据数据特点和分析目的进行调整。
5.然后点击【输出】选项卡,选择输出决策树方向、节点内容、标度等内容,点击“继续”-“确定”按钮,SPSS将运行决策树分析,并在输出窗口中显示结果。
二、 SPSS决策树分类表解读
1.通过在SPSS中完成数据导入并进行决策树分析,生成以下分类表,这个分类表是决策树分类结果最重要的展现形式之一,展示了模型预测值与实际观测值的匹配情况。
2.如上图所示,当实测值为否时:
决策树预测“否”的数量为0,决策树预测“是”的数量是5,决策树预测正确百分比是0.0%,这意味着对于那些实际上不会购买的用户,决策树没有做出一次正确的预测。
3.当实测值为是时:
决策树预测“否”的数量是0,决策树预测“是”的数量是5,这表明决策树预测正确百分比为100%,这说明对于实际会购买的用户,决策树具有非常高的预测准确性。
从这个分类表中可以看出决策树在预测客户会购买产品方面表现比较出色,但在预测客户不会购买产品方面表现稍微有些欠缺,为此我们可以引入更多影响客户购买行为的变量,来看是否能提高预测准确率。
4.决策树整体预测准确率的总体百分比是 50.0%。
它是这样计算得出的,数据总样本数量是10(5 个实际不会购买+ 5个实际会购买),而正确预测的数量是 5(5个实际会购买的客户被正确预测),所以总体百分比是(正确预测的数量总和/总样本数量)× 100% ,也就是(5/10)×100% = 50.0%。
以上就是关于SPSS决策树分类怎么做,SPSS决策树分类表解读的内容介绍,通过详细说明在 SPSS 中进行决策树分类的步骤,以及如何解读分类表中的风险、实测与预测交叉分类等内容可以让大家更深入了解运用SPSS数据分析工具,希望可以对大家有帮助。
作者:EON
展开阅读全文
︾
微信公众号
读者也喜欢这些内容: