IBM SPSS Statistics 中文网站 > 使用技巧 > SPSS效度分析个案数不足两个 SPSS效度分析相关系数大概多少合适

SPSS效度分析个案数不足两个 SPSS效度分析相关系数大概多少合适

发布时间:2022/07/18 15:04:10

品牌型号:Dell N5010

系统:Windows 10

软件版本:IBM SPSS Statistics

初学者使用IBM SPSS Statistics进行效度分析常常不能正确理解相关系数含义,或者问题设置不正确出现很多的错误,这是非常正常的,坚持多学习,多了解就能很好的解决此类问题,本文就常见的问题如SPSS效度分析个案数不足两个,SPSS效度分析相关系数大概多少合适向大家作简单介绍。

一、SPSS效度分析个案数不足两个

个案数不足两个错误是使用SPSS进行效度分析时的常见错误,SPSS效度分析是借助主成分分析进行的,主成分分析是降维过程,目的在于把线性相关的几组变量用主成分向量组代替,在主成分分析过程中,要对每组数据求解方差,如果这组数据完全相同,则方差为零,主成分分析便出现错误。

为了便于大家理解,我们举一个实例,例如,在某个大学城进行学生电脑使用时间统计,如果调查问卷中有这样一个题目,请问你是不是大学生?显而易见,在大学城进行的学生调查,这个问题都会选择是,我们使用名义变量1代表是,0代表不是,这个问题的录入数据便为1。如图1所示,我们按照第三小节中的方法进行效度分析,此时进行效度分析结果输出窗口就会出现图2所示的错误,提示个案数不足两个。

一组变量值均相等
一组变量值均相等

 

实际来看这个问题是没有意义的,剔除这个问题,将不再显示此错误,正确的进行效度分析还要关注相关性,主成分分析相关性可由KMO系数得出,我们在第二小节中介绍。

个案数不足两个警告
个案数不足两个警告

 

二、SPSS效度分析相关系数大概多少合适

我们在上一节中介绍过,SPSS效度分析是借助主成分分析进行的,主成分分析要求变量由相关性较强的几组组成,这样才能进行后续的分析,所以进行效度分析,就必须进行主成分分析,进行主成分分析,就必须进行相关性分析,主成分分析的相关性分析可由KMO系数得出,KMO系数的求解方法我们将在第三小节中介绍,我们在本节介绍KMO取值多少合适。图3是某调查问卷KMO和巴特利特检验检验结果。

KMO和巴特利特检验结果
KMO和巴特利特检验结果

KMO系数高于0.8,证明变量非常适合进行主成分分析,在0.6-0.8之间说明比较适合作主成分分析,低于0.5说明不适合作主成分分析。本例中KMO系数高于0.8,适于作主成分分析,同时巴特利特球形度检验显著性小于0.05,也说明数据适于作主成分分析,适于作主成分分析,说明问卷效度较高。

进一步作简单介绍,我们观察碎石图,可以发现在第三个点曲线发生突跃,说明用两个主成分即可代替全部变量,说明整张调查问卷,共有两个主要维度。

以上就是关于效度检验分析方法和需要注意的问题,下面我们介绍SPSS效度检验步骤。

碎石图
碎石图

三、SPSS KMO求解及效度分析步骤

点击分析,降维,因子,进入因子分析界面。

进入因子分析界面
进入因子分析界面

 

 

将全部变量加入变量列表中,然后点击描述,勾选KMO和巴特利特球形度检验,这样SPSS会在结果中输出图3所示的KMO检验的值。

勾选KMO检验
勾选KMO检验

 

然后点击提取,勾选碎石图,SPSS将在结果中输出图4所示的碎石图,点击继续,然后点击旋转,勾选最大方差法,点击继续,确定,SPSS将进行主成分分析。

进行主成分分析
进行主成分分析

 

分析完毕后,SPSS会输出结果,我们按照第二小节中方法评价即可。

初学者常常有SPSS效度分析个案数不足两个,SPSS效度分析相关系数大概多少合适此类的问题,问卷中不应有答案一致的问题,这是没有意义的,也会导致个案数不足两个的警告,KMO值体现了数据适不适合作主成分分析,间接反映了效度高低,KMO值在0.8以上,代表问卷效度较高。

 

作者:莱阳黎曼

SPSS Statistics
云版首发!秒杀只需1分钱!
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
最新文章
1分钱秒杀!云版大数据统计与应用分析解决方案上线
在经历了数个月的悉心筹备后,云版大数据统计与应用分析解决方案终于要和大家见面了!为了让更多人能体验到本服务,我们特别发起了限量1分钱秒杀活动。
2022-11-24
spss缺失值分析步骤 spss缺失值分析结果怎么看
在数据调查过程中,工作人员常常会遇到数据缺失现象。数据缺失分为三类,随机缺失,完全随机缺失,非随机缺失。无论哪种缺失,都可能导致严重的问题,或者大大降低统计的精度。利用IBM SPSS Statistics可以对数据缺失值进行分析,关于SPSS缺失值分析步骤是怎样的,SPSS缺失值分析结果怎么看的问题?本文结合实例,为大家做简单介绍。
2022-11-24
spss标签值不显示 spss标签值乱码
使用IBM SPSS Statistics进行统计分析的过程中,为了工作便利,常常会为变量设置标签。在设置标签过程中,常常会遇到各种问题,如SPSS标签值不显示,SPSS标签值乱码等问题,这些问题产生的根源是什么?如何解决?本文向大家做简单介绍。
2022-11-21
IBM SPSS Statistics云版本登录使用教程
感谢您订阅IBM SPSS Statistics云版本服务,IBM SPSS Statistics云版本是由思杰马克丁+IBM+阿里云联合推出,帮助用户解决短时间使用正版软件的需求,提供周付费、月付费两种购买模式,性价比极高。那么在购买了IBM SPSS Statistics云版本之后,应该如何登陆使用呢,本篇教程就来告诉大家使用方法。
2022-11-23
spss中t值和p值是什么意思 spss中t值和p值的关系
在统计分析过程中,常常会遇到这样的情况:检验两个相关的样本是否来自具有相同均值的总体,就会用到t检验。t检验(Student's t test),主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布, t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。利用IBM SPSS Statistics统计分析软件进行t检验可以避免繁杂的统计学计算,快速给出结果,供用户分析。SPSS中t值和p值是什么意思,SPSS中t值和p值的关系是什么,本文结合实例,向大家做简单的介绍。
2022-11-16
spss pearson相关性分析步骤 spss pearson相关性分析结果怎么看
Pearson(皮尔逊)相关性指的是联合分布服从二维正态分布的随机变量X,Y之间的简单线性相关关系,X,Y之间的相关关系由简单相关系数r表示。利用IBM SPSS Statistics可以非常快速地完成两个随机变量X,Y间的Pearson(皮尔逊)相关性分析,SPSS Pearson相关性分析步骤是什么,SPSS Pearson相关性分析结果怎么看,本文结合实例,向大家做简单的介绍。
2022-11-14

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容:

咨询热线

在线咨询

限时折扣