SPSS > 使用技巧 > SPSS效度分析个案数不足两个 SPSS效度分析相关系数大概多少合适

SPSS效度分析个案数不足两个 SPSS效度分析相关系数大概多少合适

发布时间:2022-07-18 15: 04: 10

品牌型号:Dell N5010

系统:Windows 10

软件版本:IBM SPSS Statistics

初学者使用IBM SPSS Statistics进行效度分析常常不能正确理解相关系数含义,或者问题设置不正确出现很多的错误,这是非常正常的,坚持多学习,多了解就能很好的解决此类问题,本文就常见的问题如SPSS效度分析个案数不足两个,SPSS效度分析相关系数大概多少合适向大家作简单介绍。

一、SPSS效度分析个案数不足两个

个案数不足两个错误是使用SPSS进行效度分析时的常见错误,SPSS效度分析是借助主成分分析进行的,主成分分析是降维过程,目的在于把线性相关的几组变量用主成分向量组代替,在主成分分析过程中,要对每组数据求解方差,如果这组数据完全相同,则方差为零,主成分分析便出现错误。

为了便于大家理解,我们举一个实例,例如,在某个大学城进行学生电脑使用时间统计,如果调查问卷中有这样一个题目,请问你是不是大学生?显而易见,在大学城进行的学生调查,这个问题都会选择是,我们使用名义变量1代表是,0代表不是,这个问题的录入数据便为1。如图1所示,我们按照第三小节中的方法进行效度分析,此时进行效度分析结果输出窗口就会出现图2所示的错误,提示个案数不足两个。

一组变量值均相等
一组变量值均相等

 

实际来看这个问题是没有意义的,剔除这个问题,将不再显示此错误,正确的进行效度分析还要关注相关性,主成分分析相关性可由KMO系数得出,我们在第二小节中介绍。

个案数不足两个警告
个案数不足两个警告

 

二、SPSS效度分析相关系数大概多少合适

我们在上一节中介绍过,SPSS效度分析是借助主成分分析进行的,主成分分析要求变量由相关性较强的几组组成,这样才能进行后续的分析,所以进行效度分析,就必须进行主成分分析,进行主成分分析,就必须进行相关性分析,主成分分析的相关性分析可由KMO系数得出,KMO系数的求解方法我们将在第三小节中介绍,我们在本节介绍KMO取值多少合适。图3是某调查问卷KMO和巴特利特检验检验结果。

KMO和巴特利特检验结果
KMO和巴特利特检验结果

KMO系数高于0.8,证明变量非常适合进行主成分分析,在0.6-0.8之间说明比较适合作主成分分析,低于0.5说明不适合作主成分分析。本例中KMO系数高于0.8,适于作主成分分析,同时巴特利特球形度检验显著性小于0.05,也说明数据适于作主成分分析,适于作主成分分析,说明问卷效度较高。

进一步作简单介绍,我们观察碎石图,可以发现在第三个点曲线发生突跃,说明用两个主成分即可代替全部变量,说明整张调查问卷,共有两个主要维度。

以上就是关于效度检验分析方法和需要注意的问题,下面我们介绍SPSS效度检验步骤。

碎石图
碎石图

三、SPSS KMO求解及效度分析步骤

点击分析,降维,因子,进入因子分析界面。

进入因子分析界面
进入因子分析界面

 

 

将全部变量加入变量列表中,然后点击描述,勾选KMO和巴特利特球形度检验,这样SPSS会在结果中输出图3所示的KMO检验的值。

勾选KMO检验
勾选KMO检验

 

然后点击提取,勾选碎石图,SPSS将在结果中输出图4所示的碎石图,点击继续,然后点击旋转,勾选最大方差法,点击继续,确定,SPSS将进行主成分分析。

进行主成分分析
进行主成分分析

 

分析完毕后,SPSS会输出结果,我们按照第二小节中方法评价即可。

初学者常常有SPSS效度分析个案数不足两个,SPSS效度分析相关系数大概多少合适此类的问题,问卷中不应有答案一致的问题,这是没有意义的,也会导致个案数不足两个的警告,KMO值体现了数据适不适合作主成分分析,间接反映了效度高低,KMO值在0.8以上,代表问卷效度较高。

 

作者:莱阳黎曼

展开阅读全文

标签:个案重组SPSS个案控制个案重组变量SPSS计算相关系数SPSS在线分析SPSS许可证代码SPSS许可证SPSS信效度分析SPSS效度分析

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS生存分析怎么输入删失的数据 SPSS生存分析步骤
对于经常与数据分析打交道的用户来说,一款好用的数据分析软件既可以提高我们的数据分析效率,还可以快速将分析完成的数据进行导出,便于对数据后续的开发和利用。这里给大家介绍一款我自己常用的数据分析软件—SPSS,同时带来SPSS生存分析怎么输入删失的数据,SPSS生存分析步骤的具体内容。
2024-11-20
SPSS生成变量功能在哪里 SPSS生成变量功能怎么用
在SPSS导入数据后,由于各种原因可能需要在原数据表上添加新变量。这些新变量可能是全新的,也可能是通过原有变量计算而得。虽然可以重新导入数据,但如果能在原数据表基础上添加会更方便。SPSS的生成变量功能可满足以上需求,那么,SPSS生成变量功能在哪里,SPSS生成变量功能怎么用?接下来,让我们详细来学习下相关的内容。
2024-11-19
SPSS数据变换是什么意思 SPSS数据变换方法
SPSS是一款功能强大的统计分析软件,支持数据处理、数据分析和数据可视化等多种操作,被广泛应用于各类研究和数据统计。很多用户在使用SPSS时,可能会遇到不知道什么是数据变换和如何进行数据变换等问题。本文将为大家介绍关于SPSS数据变换是什么意思,SPSS数据变换方法的相关内容。
2024-11-19
论文SPSS标准差大于1合理吗 SPSS怎么计算平均值
在进行论文写作中,通常需要用到平均值、样本差等指标。平均值就是所收集到的样本均值,代表了样本的集中程度。而标准差则是反映所收集到的样本距离其平均值,也就是距离集中位置的距离。下面我给大家介绍一下论文SPSS标准差大于1合理吗,SPSS怎么计算平均值的相关内容。
2024-11-18
SPSS计算标准偏差公式怎么算 SPSS标准误差怎么看
标准偏差,也称为SD,是一种统计学上常用的分析指标,用于衡量一组数值的变异性或离散程度。与标准偏差紧密相关的另一个概念是标准误差,简称SE。标准误差是用来计算收集到的样本均值的变异性的统计指标。本文会指导大家SPSS计算标准偏差公式怎么算,SPSS标准误差怎么看。希望用户对数据的离散程度和样本统计量的可靠性有一个清晰的认识。
2024-11-18
虚拟变量转换是什么意思 SPSS如何设置虚拟变量操作步骤
虚拟变量转换是什么意思?虚拟变量转换指的是将分类变量创建为虚拟变量的过程。为了满足后续统计运算的需求,很多时候要将分类变量转换为数字型的变量,而虚拟变量转换就能满足这一操作需求。本文会给大家演示SPSS如何设置虚拟变量操作步骤,帮助大家更好地理解相关概念。
2024-11-16

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: