SPSS > 使用技巧 > SPSS效度分析个案数不足两个 SPSS效度分析相关系数大概多少合适

SPSS效度分析个案数不足两个 SPSS效度分析相关系数大概多少合适

发布时间:2022-07-18 15: 04: 10

品牌型号:Dell N5010

系统:Windows 10

软件版本:IBM SPSS Statistics

初学者使用IBM SPSS Statistics进行效度分析常常不能正确理解相关系数含义,或者问题设置不正确出现很多的错误,这是非常正常的,坚持多学习,多了解就能很好的解决此类问题,本文就常见的问题如SPSS效度分析个案数不足两个,SPSS效度分析相关系数大概多少合适向大家作简单介绍。

一、SPSS效度分析个案数不足两个

个案数不足两个错误是使用SPSS进行效度分析时的常见错误,SPSS效度分析是借助主成分分析进行的,主成分分析是降维过程,目的在于把线性相关的几组变量用主成分向量组代替,在主成分分析过程中,要对每组数据求解方差,如果这组数据完全相同,则方差为零,主成分分析便出现错误。

为了便于大家理解,我们举一个实例,例如,在某个大学城进行学生电脑使用时间统计,如果调查问卷中有这样一个题目,请问你是不是大学生?显而易见,在大学城进行的学生调查,这个问题都会选择是,我们使用名义变量1代表是,0代表不是,这个问题的录入数据便为1。如图1所示,我们按照第三小节中的方法进行效度分析,此时进行效度分析结果输出窗口就会出现图2所示的错误,提示个案数不足两个。

一组变量值均相等
一组变量值均相等

 

实际来看这个问题是没有意义的,剔除这个问题,将不再显示此错误,正确的进行效度分析还要关注相关性,主成分分析相关性可由KMO系数得出,我们在第二小节中介绍。

个案数不足两个警告
个案数不足两个警告

 

二、SPSS效度分析相关系数大概多少合适

我们在上一节中介绍过,SPSS效度分析是借助主成分分析进行的,主成分分析要求变量由相关性较强的几组组成,这样才能进行后续的分析,所以进行效度分析,就必须进行主成分分析,进行主成分分析,就必须进行相关性分析,主成分分析的相关性分析可由KMO系数得出,KMO系数的求解方法我们将在第三小节中介绍,我们在本节介绍KMO取值多少合适。图3是某调查问卷KMO和巴特利特检验检验结果。

KMO和巴特利特检验结果
KMO和巴特利特检验结果

KMO系数高于0.8,证明变量非常适合进行主成分分析,在0.6-0.8之间说明比较适合作主成分分析,低于0.5说明不适合作主成分分析。本例中KMO系数高于0.8,适于作主成分分析,同时巴特利特球形度检验显著性小于0.05,也说明数据适于作主成分分析,适于作主成分分析,说明问卷效度较高。

进一步作简单介绍,我们观察碎石图,可以发现在第三个点曲线发生突跃,说明用两个主成分即可代替全部变量,说明整张调查问卷,共有两个主要维度。

以上就是关于效度检验分析方法和需要注意的问题,下面我们介绍SPSS效度检验步骤。

碎石图
碎石图

三、SPSS KMO求解及效度分析步骤

点击分析,降维,因子,进入因子分析界面。

进入因子分析界面
进入因子分析界面

 

 

将全部变量加入变量列表中,然后点击描述,勾选KMO和巴特利特球形度检验,这样SPSS会在结果中输出图3所示的KMO检验的值。

勾选KMO检验
勾选KMO检验

 

然后点击提取,勾选碎石图,SPSS将在结果中输出图4所示的碎石图,点击继续,然后点击旋转,勾选最大方差法,点击继续,确定,SPSS将进行主成分分析。

进行主成分分析
进行主成分分析

 

分析完毕后,SPSS会输出结果,我们按照第二小节中方法评价即可。

初学者常常有SPSS效度分析个案数不足两个,SPSS效度分析相关系数大概多少合适此类的问题,问卷中不应有答案一致的问题,这是没有意义的,也会导致个案数不足两个的警告,KMO值体现了数据适不适合作主成分分析,间接反映了效度高低,KMO值在0.8以上,代表问卷效度较高。

 

作者:莱阳黎曼

展开阅读全文

标签:个案重组SPSS个案控制个案重组变量SPSS计算相关系数SPSS在线分析SPSS许可证代码SPSS许可证SPSS信效度分析SPSS效度分析

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS因子载荷值是哪个 SPSS因子载荷系数要大于多少
如果我们研究的问题里面有很多的影响因素,而且每个因素都好像很重要,无法剔除其中的一些元素。在这种情况下,我们常常会引入因子分析的研究方法,因子分析是一种降维的方法,可以将一些相似的元素总结为共性因子,这样我们就能将多个因素减少为少数几个因素。本文会给大家介绍SPSS因子载荷值是哪个,SPSS因子载荷系数要大于多少的相关内容,感兴趣的小伙伴不容错过。
2025-05-08
SPSS清洗数据是什么意思 SPSS清洗数据步骤
在数据统计领域,如果庞杂的数据组存在较多问题,例如组别重复、存在缺失值、数据异常等复杂情况,推荐使用SPSS清洗数据的功能来剔除异常数据,这样可以避免后续数据分析的测算失误。今天,我们以这SPSS清洗数据是什么意思,SPSS清洗数据步骤两个问题为例,带大家了解一下SPSS清洗数据的相关知识。
2025-05-08
SPSS控制变量如何处理 SPSS控制变量是自变量吗
在数据分析阶段,控制变量是对因变量有影响但非研究关注主题的变量,引入控制变量可以更准确测算自变量的影响,通过解释因变量变异的额外来源而减少实验数据的随机误差。今天,我们以SPSS控制变量如何处理,SPSS控制变量是自变量吗这两个问题为例,带大家了解一下SPSS控制变量的相关知识。
2025-05-08
SPSS编码表是什么 SPSS编码表怎么导出
作为一款经典的数据分析软件,相信很多小伙伴们对SPSS都不陌生。使用SPSS能够处理庞大、复杂的数据集,大大提高我们的工作效率。接下来我来为大家介绍SPSS编码表是什么,SPSS编码表怎么导出的相关内容。
2025-05-08
SPSS协变量是什么 SPSS协变量是控制变量吗
在数据收集阶段,当采集的数据繁杂众多,我们可以使用SPSS协变量分析来测算影响重要结果的潜在因素,减少某些变量对实验数据的干扰,由此准确识别多类变量之间的因果关系。今天,我们以SPSS协变量是什么,SPSS协变量是控制变量吗这两个问题为例,带大家了解一下SPSS协变量的相关知识。
2025-05-08
SPSS交互作用分析怎么做 SPSS交互作用分析结果怎么看
在数据统计领域,如果要对数据组多类变量的关系进行研究,我们可以使用SPSS主体间效应分析和交互作用图绘制的功能。当运用了SPSS交互作用的图片绘制和数据测算,我们能够直观清晰地看出不同变量对因变量的影响。今天,我们以SPSS交互作用分析怎么做,SPSS交互作用分析结果怎么看这两个问题为例,带大家了解一下SPSS交互作用的知识。
2025-05-08

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: