SPSS > 使用技巧 > 使用SPSS对问卷数据进行处理之差异分析

使用SPSS对问卷数据进行处理之差异分析

发布时间:2021-10-30 11: 43: 31

在上次的探讨中,我们利用IBM SPSS Statistics对收集到的问卷数据进行了初步处理,并对样本分布进行了分析,本次我们继续探讨如何利用IBM SPSS Statistics软件对问卷数据进行进一步的分析处理,并且重点讨论利用SPSS软件来进行差异分析。

差异分析中有两个主要的假设检验方法,一个是t检验,一个是方差分析。其中t检验是用t分布理论来推论差异发生的概率,本文中将使用独立样本t检验,它的主要目的是比较两个独立样本平均数之间的差异是否显著。另外还有单样本t检验、配对样本t检验等,主要根据研究目的或数据形式来选择合适的方法。一般在显著水平为0.05的水平上进行分析,若p值小于0.05,则说明存在显著差异,此时再观察各独立样本的平均数,进行进一步分析即可;若p值大于0.05,则可以认为两个独立样本之间没有显著差异。

一、打开数据文件

本例中使用的数据与上一节教程相同,即利用关于社交媒体使用情况对大学生自我评价影响的研究问卷所收集到的数据,并且通过上一节教程已经进行了一定处理,数据如图1所示。

图1:示例数据
图1:示例数据

变量视图页面如图2所示。

图2:变量视图页面
图2:变量视图页面

二、按性别分组的独立样本t检验

打开IBM SPSS Statistics分析中的比较均值-独立样本T检验,如图3所示。

图3:独立样本t检验位置
图3:独立样本t检验位置

打开对话框后,将性别放入分组变量,其他连续型变量(如依赖度、喜爱度等)都放入检验变量,注意:这里需使用上一节中计算出的新变量(即均值),选择完毕后如图4所示。

图4:独立样本t检验对话框
图4:独立样本t检验对话框

此时还需要对分组变量进行组别的划分,点击定义组,组1为1(男),组2为2(女),如图5所示。

图5:定义组
图5:定义组

定义组后点击确定按钮,得到输出结果如图6所示。

图6:输出结果-按性别分组
图6:输出结果-按性别分组

对结果进行分析,方差齐性检验中sig值(即p值)大于0.05时,看假设方差相等那一行,反之则看假设方差不相等那一行。结果表明,只有一个t检验的p值是小于0.05的,即关于“对他人在意程度”这一指标。在这一指标的检验中其方差是不齐的,所以看假设方差不相等一行,其t检验的sig值为0.014,也就是说,性别在“对他人在意程度”这一指标上存在显著差异,此时我们再观察输出结果中的均值及标准差,如图7所示。

图7:均值与标准差
图7:均值与标准差

观察发现,在“对他人在意程度”这一项中,女性的均值是大于男性的,所以本次t检验的结论是:对他人的在意程度上,女性显著大于男性。

三、按年级分组的独立样本t检验

按年级分组的独立样本t检验操作步骤与上述按性别分组的基本相同。打开IBM SPSS Statistics分析菜单下的比较均值-独立样本T检验,将年级作为分组变量,其他连续型变量作为检验变量即可,在此不再赘述,但需要注意的是在定义组时,因为年级分为大一、大二、大三、大四四个类别,而独立样本t检验只能检验两样本之间的差异,所以需要用到“割点”,如图8所示,设置割点为2,即年级大于等于2的为一组,小于2的为一组,以此来判断大一与其他年级是否存在显著差异,同样地,设置割点为4的话,就是判断大四与其他年级是否存在显著差异。

图8:定义组-割点
图8:定义组-割点

点击确定按钮,得到输出结果如图9所示。

图9:输出结果-按年级分组
图9:输出结果-按年级分组

观察输出结果发现,并无p值小于0.05,这说明大一与其他年级之间在各项变量上都无显著差异。此外,将割点设置为2.5、3、4等,可以由读者自行尝试,观察其结果是否有显著差异存在。

本文中,我们重点讲解了怎样利用IBM SPSS Statistics对问卷样本分布进行差异分析,其中涉及到了两分类变量以及四分类变量的独立样本t检验如何操作,之后的讲解中,将会利用差异分析的另一大手段——方差分析来对问卷数据进行分析,欢迎访问IBM SPSS Statistics中文网站。

作者:向风

展开阅读全文

标签:SPSS问卷数据分析问卷星SPSS

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS因子和协变量的区别和联系 SPSS因子和协变量怎么选
在SPSS数据统计分析方法中,回归分析是比较常用到的数据分析方法,其中多元 Logistic 回归分析是较为复杂的一种分析方法,因为其中包含了因子、协变量、因变量、自变量等多个变量,在进行分析的时候,需要区分好这些变量,接下来重点给大家讲解,SPSS因子和协变量的区别和联系,SPSS因子和协变量怎么选。
2025-05-08
SPSS因子载荷值是哪个 SPSS因子载荷系数要大于多少
如果我们研究的问题里面有很多的影响因素,而且每个因素都好像很重要,无法剔除其中的一些元素。在这种情况下,我们常常会引入因子分析的研究方法,因子分析是一种降维的方法,可以将一些相似的元素总结为共性因子,这样我们就能将多个因素减少为少数几个因素。本文会给大家介绍SPSS因子载荷值是哪个,SPSS因子载荷系数要大于多少的相关内容,感兴趣的小伙伴不容错过。
2025-05-08
SPSS清洗数据是什么意思 SPSS清洗数据步骤
在数据统计领域,如果庞杂的数据组存在较多问题,例如组别重复、存在缺失值、数据异常等复杂情况,推荐使用SPSS清洗数据的功能来剔除异常数据,这样可以避免后续数据分析的测算失误。今天,我们以这SPSS清洗数据是什么意思,SPSS清洗数据步骤两个问题为例,带大家了解一下SPSS清洗数据的相关知识。
2025-05-08
SPSS控制变量如何处理 SPSS控制变量是自变量吗
在数据分析阶段,控制变量是对因变量有影响但非研究关注主题的变量,引入控制变量可以更准确测算自变量的影响,通过解释因变量变异的额外来源而减少实验数据的随机误差。今天,我们以SPSS控制变量如何处理,SPSS控制变量是自变量吗这两个问题为例,带大家了解一下SPSS控制变量的相关知识。
2025-05-08
SPSS编码表是什么 SPSS编码表怎么导出
作为一款经典的数据分析软件,相信很多小伙伴们对SPSS都不陌生。使用SPSS能够处理庞大、复杂的数据集,大大提高我们的工作效率。接下来我来为大家介绍SPSS编码表是什么,SPSS编码表怎么导出的相关内容。
2025-05-08
SPSS协变量是什么 SPSS协变量是控制变量吗
在数据收集阶段,当采集的数据繁杂众多,我们可以使用SPSS协变量分析来测算影响重要结果的潜在因素,减少某些变量对实验数据的干扰,由此准确识别多类变量之间的因果关系。今天,我们以SPSS协变量是什么,SPSS协变量是控制变量吗这两个问题为例,带大家了解一下SPSS协变量的相关知识。
2025-05-08

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: