IBM SPSS Statistics 中文网站 > 使用技巧 > 使用SPSS对问卷数据进行处理之差异分析

使用SPSS对问卷数据进行处理之差异分析

发布时间:2021-10-30 11: 43: 31

在上次的探讨中,我们利用IBM SPSS Statistics对收集到的问卷数据进行了初步处理,并对样本分布进行了分析,本次我们继续探讨如何利用IBM SPSS Statistics软件对问卷数据进行进一步的分析处理,并且重点讨论利用SPSS软件来进行差异分析。

差异分析中有两个主要的假设检验方法,一个是t检验,一个是方差分析。其中t检验是用t分布理论来推论差异发生的概率,本文中将使用独立样本t检验,它的主要目的是比较两个独立样本平均数之间的差异是否显著。另外还有单样本t检验、配对样本t检验等,主要根据研究目的或数据形式来选择合适的方法。一般在显著水平为0.05的水平上进行分析,若p值小于0.05,则说明存在显著差异,此时再观察各独立样本的平均数,进行进一步分析即可;若p值大于0.05,则可以认为两个独立样本之间没有显著差异。

一、打开数据文件

本例中使用的数据与上一节教程相同,即利用关于社交媒体使用情况对大学生自我评价影响的研究问卷所收集到的数据,并且通过上一节教程已经进行了一定处理,数据如图1所示。

图1:示例数据
图1:示例数据

变量视图页面如图2所示。

图2:变量视图页面
图2:变量视图页面

二、按性别分组的独立样本t检验

打开IBM SPSS Statistics分析中的比较均值-独立样本T检验,如图3所示。

图3:独立样本t检验位置
图3:独立样本t检验位置

打开对话框后,将性别放入分组变量,其他连续型变量(如依赖度、喜爱度等)都放入检验变量,注意:这里需使用上一节中计算出的新变量(即均值),选择完毕后如图4所示。

图4:独立样本t检验对话框
图4:独立样本t检验对话框

此时还需要对分组变量进行组别的划分,点击定义组,组1为1(男),组2为2(女),如图5所示。

图5:定义组
图5:定义组

定义组后点击确定按钮,得到输出结果如图6所示。

图6:输出结果-按性别分组
图6:输出结果-按性别分组

对结果进行分析,方差齐性检验中sig值(即p值)大于0.05时,看假设方差相等那一行,反之则看假设方差不相等那一行。结果表明,只有一个t检验的p值是小于0.05的,即关于“对他人在意程度”这一指标。在这一指标的检验中其方差是不齐的,所以看假设方差不相等一行,其t检验的sig值为0.014,也就是说,性别在“对他人在意程度”这一指标上存在显著差异,此时我们再观察输出结果中的均值及标准差,如图7所示。

图7:均值与标准差
图7:均值与标准差

观察发现,在“对他人在意程度”这一项中,女性的均值是大于男性的,所以本次t检验的结论是:对他人的在意程度上,女性显著大于男性。

三、按年级分组的独立样本t检验

按年级分组的独立样本t检验操作步骤与上述按性别分组的基本相同。打开IBM SPSS Statistics分析菜单下的比较均值-独立样本T检验,将年级作为分组变量,其他连续型变量作为检验变量即可,在此不再赘述,但需要注意的是在定义组时,因为年级分为大一、大二、大三、大四四个类别,而独立样本t检验只能检验两样本之间的差异,所以需要用到“割点”,如图8所示,设置割点为2,即年级大于等于2的为一组,小于2的为一组,以此来判断大一与其他年级是否存在显著差异,同样地,设置割点为4的话,就是判断大四与其他年级是否存在显著差异。

图8:定义组-割点
图8:定义组-割点

点击确定按钮,得到输出结果如图9所示。

图9:输出结果-按年级分组
图9:输出结果-按年级分组

观察输出结果发现,并无p值小于0.05,这说明大一与其他年级之间在各项变量上都无显著差异。此外,将割点设置为2.5、3、4等,可以由读者自行尝试,观察其结果是否有显著差异存在。

本文中,我们重点讲解了怎样利用IBM SPSS Statistics对问卷样本分布进行差异分析,其中涉及到了两分类变量以及四分类变量的独立样本t检验如何操作,之后的讲解中,将会利用差异分析的另一大手段——方差分析来对问卷数据进行分析,欢迎访问IBM SPSS Statistics中文网站。

作者:向风

展开阅读全文

标签:SPSS问卷数据分析

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
spss怎么做逐步回归分析 逐步回归分析spss结果解读
spss怎么做逐步回归分析?逐步回归分析是多元线性回归分析的一种,可通过spss回归分析中的“步进”法来做逐步回归分析。本文会运用例子演示逐步回归分析步骤,并进行逐步回归分析spss结果解读。
2022-05-12
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
最新文章
spss合并文件的操作步骤 spss合并文件变量怎么配对
可以使用两种方式合并两个数据文件中的数据,一是包含相同个案但不同变量的数据集,另一个是包含相同变量但不同个案的数据集,本文主要向大家介绍如何合并包含相同个案但不同变量的数据集。关于SPSS合并文件的操作步骤是什么,SPSS合并文件变量怎么配对,结合实例,向大家作简单介绍。
2023-11-06
spss计算变量如何计算平方 spss计算变量如何全选
以变量为单位管理并处理数据,是使用SPSS进行建模统计分析的基础。对于有经验的数据分析工作者,这部分工作要占整个统计分析工作的70%以上。管理变量大致包括两部分内容,变量赋值(或称为变量计算)和变量转化。本文主要向大家介绍变量计算的内容,例如SPSS计算变量如何计算平方,SPSS计算变量如何全选。
2023-11-04
spss卡方检验结果线性关联是什么 spss卡方检验结果没有连续性校正
对于两组连续性变量,一般通过回归分析判断两者是否存在相关关系。对于离散型变量,则需借助卡方检验判断两者之间是否存在相关关系。变量数据类型不同,SPSS卡方检验提供的结果形式也有所不同,因此很多用户会感到不解。本文结合实例向大家介绍SPSS卡方检验结果线性关联是什么,SPSS卡方检验结果没有连续性校正原因是什么。
2023-11-02
spss回归分析如何操作 spss回归分析的基本步骤
通过回归分析,可以了解变量间是否存在相互依赖的定量关系。根据方程类型,回归分析可以分为线性回归和非线性回归。根据变量的数目多少,回归分析可以分为一元回归分析和多元回归分析。本文以最简单的一元线性回归分析为例向大家介绍SPSS回归分析如何操作,SPSS回归分析的基本步骤。
2023-10-31
spss方差齐性检验如何操作 spss方差齐性检验怎么看方差齐不齐
方差的大小代表了数据分布的离散程度,方差大,数据分布越分散,方差小,数据分布越集中。组间数据分布离散程度差别较大时,是不能进行比较的,此时不能确定两组数据的差异来源于组间还是组内,因此方差齐性检验是进行组间数据比较的基础。关于SPSS方差齐性检验如何操作,SPSS方差齐性检验怎么看方差齐不齐,本文借助实例,向大家作简单介绍。
2023-10-25
spss线性回归图怎么做 spss线性回归图怎么看结果
借助回归分析,我们可以了解到两组变量是否存在具有统计学意义的依赖关系,描述这种依赖关系的方程是什么,方程可以在多大程度上解释因变量的变化。使用SPSS,不仅可以简便的完成回归分析,还可以为变量绘制散点图,便于大家直观的了解变量间关系。关于SPSS线性回归图怎么做,SPSS线性回归图怎么看结果,本文借助实例,向大家做简单的介绍。
2023-10-25

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。