IBM SPSS Statistics 中文网站 > 使用技巧 > IBM SPSS Statistics进行多自变量的多元线性回归分析

IBM SPSS Statistics进行多自变量的多元线性回归分析

发布时间:2021/08/11 11:47:58

IBM SPSS Statistics的多元线性回归研究的是多个自变量与单个因变量的回归关系,与一元线性回归方程相比,多元线性回归方程更有实际性意义。因在实际的研究中,一个现象总是由多个因素影响,而很难局限于单因素影响。

如果您已经学习过一元线性回归方程,那么,多元线性回归将会变得非常简单,实际上,多元线性回归方程只是在一元线性回归方程的基础上,增加多个自变量。

一、数据准备

接下来,我们以一组包含客流量、销售额与销售量的数据组为例,演示一下多元线性回归方程的分析过程。

图1:销售额与客流量数据
图1:销售额与客流量数据

二、线性回归分析

与一元线性回归方程相同,多元线性回归方程使用的是SPSS的线性回归分析方法。

图2:线性回归

三、变量设置

只是在变量设置的过程中,多元线性回归方程会加入多个自变量。在本例中,如图3所示,我们将客流量与销售量都设置为自变量,以研究两者与销售额之间的回归关系。

图3:变量设置
图3:变量设置

在统计量的设定上:

1. 为了检验回归方程系数的显著性,需勾选回归系数中的“估算值”并将其置信区间设定为95%(当然,您也可以放低要求设为90%)。

2. 为了检验回归模型的拟合优度,需勾选“模型拟合”

3. 同时勾选“描述”统计量,了解数据的基本特征

图4:统计量

在图标的设定上,可同时勾选“直方图”与“正态概率图”,了解数据的残差是否服从正态分布,以检验回归方程的显著性。

图5:图表
图5:图表

三、结果解读

完成以上设置后,我们先来看一下销售额的标准化残差直方图,可以观察到,销售额的标准化残差服从正态分布,大部分的标准化残差分布在-2到2之间。

图6:标准化残差直方图
图6:标准化残差直方图

从正态P-P图看到,预期累积概率与实测累积概率的分布趋近于一条直线,也说明了销售额的残差服从正态分布,满足了线性回归模型对于正态性的要求。

图7:正态P-P图
图7:正态P-P图

在变量相关性的检验上,如图8所示,销售额与客流量、销售量之间都存在着显著的相关性。

图8:变量相关性
图8:变量相关性

在模型拟合优度的检验上,其调整后R方数值为0.976,说明模型的拟合优度高。

图9:模型拟合优度
图9:模型拟合优度


在满足回归方程正态性要求、回归方程拟合优度高的前提下,观察回归模型的系数检验显著性。如图10所示,回归方程的客流量与销售量系数均显著,但常量系数不显著。

常量系数检验不显著,说明其数值对回归方程的影响意义不大,可建立无截距的回归方程。根据回归结果列出以下方程:y=1.74x1+53.265x2

图10:系数显著性
图10:系数显著性

四、小结

综上所述,在SPSS中构建多元线性回归方程的方法与一元线性回归方程相似,只是在自变量的设置上稍有区别,SPSS一元线性回归方程仅包含一个自变量,而多元线性回归方程包含二个或以上的自变量。

另外,与一元线性回归方程相同,多元线性回归方程需满足线性、正态性、方差齐性等要求。

作者:泽洋

标签:多元线性SPSS
SPSS Statistics
云版首发!秒杀只需1分钱!
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
最新文章
1分钱秒杀!云版大数据统计与应用分析解决方案上线
在经历了数个月的悉心筹备后,云版大数据统计与应用分析解决方案终于要和大家见面了!为了让更多人能体验到本服务,我们特别发起了限量1分钱秒杀活动。
2022-11-24
spss缺失值分析步骤 spss缺失值分析结果怎么看
在数据调查过程中,工作人员常常会遇到数据缺失现象。数据缺失分为三类,随机缺失,完全随机缺失,非随机缺失。无论哪种缺失,都可能导致严重的问题,或者大大降低统计的精度。利用IBM SPSS Statistics可以对数据缺失值进行分析,关于SPSS缺失值分析步骤是怎样的,SPSS缺失值分析结果怎么看的问题?本文结合实例,为大家做简单介绍。
2022-11-24
spss标签值不显示 spss标签值乱码
使用IBM SPSS Statistics进行统计分析的过程中,为了工作便利,常常会为变量设置标签。在设置标签过程中,常常会遇到各种问题,如SPSS标签值不显示,SPSS标签值乱码等问题,这些问题产生的根源是什么?如何解决?本文向大家做简单介绍。
2022-11-21
IBM SPSS Statistics云版本登录使用教程
感谢您订阅IBM SPSS Statistics云版本服务,IBM SPSS Statistics云版本是由思杰马克丁+IBM+阿里云联合推出,帮助用户解决短时间使用正版软件的需求,提供周付费、月付费两种购买模式,性价比极高。那么在购买了IBM SPSS Statistics云版本之后,应该如何登陆使用呢,本篇教程就来告诉大家使用方法。
2022-11-23
spss中t值和p值是什么意思 spss中t值和p值的关系
在统计分析过程中,常常会遇到这样的情况:检验两个相关的样本是否来自具有相同均值的总体,就会用到t检验。t检验(Student's t test),主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布, t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。利用IBM SPSS Statistics统计分析软件进行t检验可以避免繁杂的统计学计算,快速给出结果,供用户分析。SPSS中t值和p值是什么意思,SPSS中t值和p值的关系是什么,本文结合实例,向大家做简单的介绍。
2022-11-16
spss pearson相关性分析步骤 spss pearson相关性分析结果怎么看
Pearson(皮尔逊)相关性指的是联合分布服从二维正态分布的随机变量X,Y之间的简单线性相关关系,X,Y之间的相关关系由简单相关系数r表示。利用IBM SPSS Statistics可以非常快速地完成两个随机变量X,Y间的Pearson(皮尔逊)相关性分析,SPSS Pearson相关性分析步骤是什么,SPSS Pearson相关性分析结果怎么看,本文结合实例,向大家做简单的介绍。
2022-11-14

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容:

咨询热线

在线咨询

限时折扣