SPSS > 使用技巧 > 解读SPSS多元方差分析中的多因素多变量的相互影响

解读SPSS多元方差分析中的多因素多变量的相互影响

发布时间:2021-01-18 11: 59: 33

多元方差分析研究的是多个自变量与多个因变量的相互关系,也被称为多变量分析。在《怎么使用SPSS的多元方差分析法》一文中,我们已经详细学习了IBM SPSS Statistics多元方差分析的设置方法。

 本文将会重点介绍如何解读多元方差分析的检验结果。由于多元方差分析中涉及到多个自变量与因变量,因此其检验结果会包括自变量与因变量的主效应检验、自变量间的交互效应,以及自变量的事后多重比较。接下来,我们一起来解读下这复杂的关系。

图1:示例数据

一、描述统计

首先,从描述统计结果看到,无论是工资的平均值,还是福利的平均值,均随着工作年限的提高而提升,但是否存在着显著性差异,还要看多变量检验的显著性。

图2:描述统计

二、多变量检验

如图3所示,数据中的多变量检验包含了截距(一般无实际意义,可在模型设置中设置不显示)、性别、工作年限、性别*工作年限的检验。其中工作年限对因变量有显著性影响,而性别与性别*工作年限对因变量无显著性影响。

图3:多变量检验

三、主体间效应检验

接下来,我们要使用主体间效应检验,来检验不同自变量对不同因变量的影响显著性。

从多变量检验结果得知,工作年限对因变量有显著性影响,而从如图4所示的主体间效应检验结果得知,工作年限对工资、福利均有显著性影响。另外,性别与性别*工作年限的主体间效应检验进一步说明其对工资、福利无显著性影响。

图4:主体间效应检验

四、轮廓图

接着,进一步查看性别与工作年限间的交互关系。如果轮廓图中的线条是平行的话,说明因子间无交互关系,可单独分析因子对因变量的影响;如果轮廓图的线条有交叉的话,说明因子间存在交互关系,需要看两个因子的对因变量的协同作用。

从图5的工资轮廓图看到,性别与工作年限之间无明显的交互关系,可单独分析性别对因变量或工作年限对因变量的影响。

图5:工资轮廓图

同样地,在福利的轮廓图中也观察到性别与工作年限无交互关系。

图6:福利轮廓图

五、事后多重比较

在效应检验中,我们知道工作年限对工资、福利都有显著影响,那么不同工作年限的工资、福利是否有显著差异?对于这个问题,可以查看事后多重比较结果。

在这之前,需要先检验数据的方差齐性,满足方差齐性的前提下,才可以采用方差齐性的事后多重比较结果。如图7所示,工资与福利的方差齐性显著性数值均大于0.05,说明数据符合方差齐性。

图7:方差齐性检验

基于方差齐性的结果,可以看到,不同工作年限的工资、福利均有显著性差异。比如1年工作年限的工资、福利均显著性低于2、3、4年工作年限的,而2年工作年限的工资、福利均显著性低于3、4年工作年限的,以此类推。

图8:多重比较

三、小结

综上所述,IBM SPSS Statistics的多元方差分析,可检验多个自变量与多个因变量的相关关系,不仅可以检验单个自变量对因变量的影响,也可以研究多个自变量对因变量的协同效应,是一个比较复杂的检验方法。

作者:泽洋

展开阅读全文

标签:spss多元方差分析SPSS多元线性回归

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS因子载荷值是哪个 SPSS因子载荷系数要大于多少
如果我们研究的问题里面有很多的影响因素,而且每个因素都好像很重要,无法剔除其中的一些元素。在这种情况下,我们常常会引入因子分析的研究方法,因子分析是一种降维的方法,可以将一些相似的元素总结为共性因子,这样我们就能将多个因素减少为少数几个因素。本文会给大家介绍SPSS因子载荷值是哪个,SPSS因子载荷系数要大于多少的相关内容,感兴趣的小伙伴不容错过。
2025-05-08
SPSS清洗数据是什么意思 SPSS清洗数据步骤
在数据统计领域,如果庞杂的数据组存在较多问题,例如组别重复、存在缺失值、数据异常等复杂情况,推荐使用SPSS清洗数据的功能来剔除异常数据,这样可以避免后续数据分析的测算失误。今天,我们以这SPSS清洗数据是什么意思,SPSS清洗数据步骤两个问题为例,带大家了解一下SPSS清洗数据的相关知识。
2025-05-08
SPSS控制变量如何处理 SPSS控制变量是自变量吗
在数据分析阶段,控制变量是对因变量有影响但非研究关注主题的变量,引入控制变量可以更准确测算自变量的影响,通过解释因变量变异的额外来源而减少实验数据的随机误差。今天,我们以SPSS控制变量如何处理,SPSS控制变量是自变量吗这两个问题为例,带大家了解一下SPSS控制变量的相关知识。
2025-05-08
SPSS编码表是什么 SPSS编码表怎么导出
作为一款经典的数据分析软件,相信很多小伙伴们对SPSS都不陌生。使用SPSS能够处理庞大、复杂的数据集,大大提高我们的工作效率。接下来我来为大家介绍SPSS编码表是什么,SPSS编码表怎么导出的相关内容。
2025-05-08
SPSS协变量是什么 SPSS协变量是控制变量吗
在数据收集阶段,当采集的数据繁杂众多,我们可以使用SPSS协变量分析来测算影响重要结果的潜在因素,减少某些变量对实验数据的干扰,由此准确识别多类变量之间的因果关系。今天,我们以SPSS协变量是什么,SPSS协变量是控制变量吗这两个问题为例,带大家了解一下SPSS协变量的相关知识。
2025-05-08
SPSS交互作用分析怎么做 SPSS交互作用分析结果怎么看
在数据统计领域,如果要对数据组多类变量的关系进行研究,我们可以使用SPSS主体间效应分析和交互作用图绘制的功能。当运用了SPSS交互作用的图片绘制和数据测算,我们能够直观清晰地看出不同变量对因变量的影响。今天,我们以SPSS交互作用分析怎么做,SPSS交互作用分析结果怎么看这两个问题为例,带大家了解一下SPSS交互作用的知识。
2025-05-08

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: