IBM SPSS Statistics 中文网站 > 使用技巧 > 协方差分析条件不满足  协方差分析的适用条件

协方差分析条件不满足  协方差分析的适用条件

发布时间:2022-02-21 14: 13: 05

品牌型号:联想

系统:Win 10

软件版本:IBM SPSS Statistics

关键词:协方差分析,协变量,数据分析

协方差分析在应用的时候,需要满足一定的条件,否则得出的结果不具备参考性。只有核心条件满足时,协方差分析才有参考意义。下面给大家介绍一下协方差分析条件不满足,协方差分析的适用条件的相关解答。

  1. 协方差分析条件不满足

在实验过程中,会受到干扰因素的影响,这些干扰因素被称为协变量。在进行数据分析时,增添协变量以控制其对实验结果的影响。

图1:协方差分析
图1:协方差分析

在进行协方差分析之前,实验变量需要满足一定的条件。

  1. 协变量是连续变量。
  2. 自变量有2个或两个以上的分组。
  3. 因变量是连续变量。
  4. 协变量与因变量之间是线性关系。
  5. 协变量和因变量的回归直线平行。
  6. 因变量的残差服从正态分布。

二、协方差分析的适用条件

协方差分析的使用条件有6个,其中1、2、3可以根据数据直接判断出来。4、5、6条件需要进行分析。

具体操作如下:

  1. 验证协变量与因变量之间是线性关系。

打开SPSS软件,将数据文件导入。

图2:导入文件
图2:导入文件

首先,根据数据绘制出散点图,由散点图得到拟合曲线,验证协变量和因变量是否是线性关系。鼠标单击“图形”,选择“图表构建器”。随后弹出名为“图表构建器”的设置对话框。

在这个对话框里,选择散点图,双击第二个图标激活。横坐标选择培训前测试成绩,纵坐标选择培训后测试成绩。右上角的方框选择职称。元素属性中,选择纵坐标,将最小值的对勾取消。设置完成单击“确定”。

图3:散点图设置
图3:散点图设置

数据分析结束后,会得到散点图,双击散点图将其激活,打开名为图标编辑器的设置对话框。在这里,单击元素,选择子组拟合线,就可以得到协变量和因变量的线性关系图了。证明协变量与因变量存在线性关系。

图4:子组拟合线
图4:子组拟合线

  1. 验证协变量和因变量回归直线平行。

单击“分析”,选择“一般线性模型”中的“单变量”。打开名为“单变量”的设置对话框。在因变量中选择培训后语言成绩,固定因子选择职称,协变量选择培训前语言测试成绩。

单击模型选项,打开名为“单变量:模型”的设置对话框,将职称和培训前语言测试成绩导入右边的模型列表中,然后按住shift键,将两者全部选中,一起导入模型中,形成培训前测试成绩和职称的交互选项。设置完毕单击“确定”。

图5:单变量:模型
图5:单变量:模型

软件运行后,输出图表。如果自变量与协变量的交互项具有显著性差异,表示各组间回归斜率不同,反之则相同。根据图表数据得知,P值为0.501,大于0.05,不具有显著性差异,说明各组间回归斜率相同。证明协变量与因变量的回归直线平行。

图6:主体间效应检验结果
图6:主体间效应检验结果

3、验证因变量的残差服从正态分布。

先根据数据生成预测值和标准化残差。单击“分析”,选择“一般线性模型”中的“单变量”。在弹出的设置对话框中,因变量、固定因子和协变量的选择依然跟上图一样。

单击“模型”,勾选全因子。单击“保存”,勾选为标准化和标准化。单击“选项”,将职称导入右列的估算平均值中,勾选描述统计、齐性检验和效应量估计。设置完毕单击“确定”。软件运行结束后生成PRE_1和ZRE_1。

图7:单变量:保存
图7:单变量:保存

单击“分析”,选择“描述统计”中的“探索”。因变量选择刚刚生成的ZRE_1,也就是标准化残差。因子列表选择职称。单击“图”的设置按钮,勾选因子级别并置,勾选含检验的正态图。设置完毕单击“确定”。

图8:探索:图
图8:探索:图

软件运行结束后,输出图表。根据表中数据可知,P值均大于0.05,表示数据接近正态分布。证实因变量的残差服从正态分布。

图9:正态检验结果
图9:正态检验结果

以上就是协方差分析条件不满足,协方差分析的适用条件的相关解答。如果想要了解更多,可以前往IBM SPSS Statistics官方网站。

作者:小影

展开阅读全文

标签:IBM SPSS Statistics

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
spss怎么做逐步回归分析 逐步回归分析spss结果解读
spss怎么做逐步回归分析?逐步回归分析是多元线性回归分析的一种,可通过spss回归分析中的“步进”法来做逐步回归分析。本文会运用例子演示逐步回归分析步骤,并进行逐步回归分析spss结果解读。
2022-05-12
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
最新文章
spss均值怎么求 spss均值结果解释
平均值反映了一组数据的集中趋势,在经济社会各个领域都有非常广泛的应用。可以采用很多种方法求解平均值,如带有统计功能的计算器,Excel,SPSS等。关于SPSS均值怎么求,SPSS均值结果解释是什么,本文借助实例,向大家作简单的介绍。
2023-12-04
spss矩阵散点图怎么做 spss矩阵散点图怎么看相关性
随着经济社会的发展,人们愈加重视数据的作用,数据可视化作为应用的热点,已经渗透到生产生活的各个方面。矩阵散点图可以直观反映多变量间相互关系,是数据可视化的具体应用。关于SPSS矩阵散点图怎么做,SPSS矩阵散点图怎么看相关性,本文借助实例向大家作简单介绍。
2023-12-01
spss合并文件的操作步骤 spss合并文件变量怎么配对
可以使用两种方式合并两个数据文件中的数据,一是包含相同个案但不同变量的数据集,另一个是包含相同变量但不同个案的数据集,本文主要向大家介绍如何合并包含相同个案但不同变量的数据集。关于SPSS合并文件的操作步骤是什么,SPSS合并文件变量怎么配对,结合实例,向大家作简单介绍。
2023-11-06
spss计算变量如何计算平方 spss计算变量如何全选
以变量为单位管理并处理数据,是使用SPSS进行建模统计分析的基础。对于有经验的数据分析工作者,这部分工作要占整个统计分析工作的70%以上。管理变量大致包括两部分内容,变量赋值(或称为变量计算)和变量转化。本文主要向大家介绍变量计算的内容,例如SPSS计算变量如何计算平方,SPSS计算变量如何全选。
2023-11-04
spss卡方检验结果线性关联是什么 spss卡方检验结果没有连续性校正
对于两组连续性变量,一般通过回归分析判断两者是否存在相关关系。对于离散型变量,则需借助卡方检验判断两者之间是否存在相关关系。变量数据类型不同,SPSS卡方检验提供的结果形式也有所不同,因此很多用户会感到不解。本文结合实例向大家介绍SPSS卡方检验结果线性关联是什么,SPSS卡方检验结果没有连续性校正原因是什么。
2023-11-02
spss回归分析如何操作 spss回归分析的基本步骤
通过回归分析,可以了解变量间是否存在相互依赖的定量关系。根据方程类型,回归分析可以分为线性回归和非线性回归。根据变量的数目多少,回归分析可以分为一元回归分析和多元回归分析。本文以最简单的一元线性回归分析为例向大家介绍SPSS回归分析如何操作,SPSS回归分析的基本步骤。
2023-10-31

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: