IBM SPSS Statistics 中文网站 > 使用技巧 > 协方差分析条件不满足  协方差分析的适用条件

协方差分析条件不满足  协方差分析的适用条件

发布时间:2022-02-21 14: 13: 05

品牌型号:联想

系统:Win 10

软件版本:IBM SPSS Statistics

关键词:协方差分析,协变量,数据分析

协方差分析在应用的时候,需要满足一定的条件,否则得出的结果不具备参考性。只有核心条件满足时,协方差分析才有参考意义。下面给大家介绍一下协方差分析条件不满足,协方差分析的适用条件的相关解答。

  1. 协方差分析条件不满足

在实验过程中,会受到干扰因素的影响,这些干扰因素被称为协变量。在进行数据分析时,增添协变量以控制其对实验结果的影响。

图1:协方差分析
图1:协方差分析

在进行协方差分析之前,实验变量需要满足一定的条件。

  1. 协变量是连续变量。
  2. 自变量有2个或两个以上的分组。
  3. 因变量是连续变量。
  4. 协变量与因变量之间是线性关系。
  5. 协变量和因变量的回归直线平行。
  6. 因变量的残差服从正态分布。

二、协方差分析的适用条件

协方差分析的使用条件有6个,其中1、2、3可以根据数据直接判断出来。4、5、6条件需要进行分析。

具体操作如下:

  1. 验证协变量与因变量之间是线性关系。

打开SPSS软件,将数据文件导入。

图2:导入文件
图2:导入文件

首先,根据数据绘制出散点图,由散点图得到拟合曲线,验证协变量和因变量是否是线性关系。鼠标单击“图形”,选择“图表构建器”。随后弹出名为“图表构建器”的设置对话框。

在这个对话框里,选择散点图,双击第二个图标激活。横坐标选择培训前测试成绩,纵坐标选择培训后测试成绩。右上角的方框选择职称。元素属性中,选择纵坐标,将最小值的对勾取消。设置完成单击“确定”。

图3:散点图设置
图3:散点图设置

数据分析结束后,会得到散点图,双击散点图将其激活,打开名为图标编辑器的设置对话框。在这里,单击元素,选择子组拟合线,就可以得到协变量和因变量的线性关系图了。证明协变量与因变量存在线性关系。

图4:子组拟合线
图4:子组拟合线

  1. 验证协变量和因变量回归直线平行。

单击“分析”,选择“一般线性模型”中的“单变量”。打开名为“单变量”的设置对话框。在因变量中选择培训后语言成绩,固定因子选择职称,协变量选择培训前语言测试成绩。

单击模型选项,打开名为“单变量:模型”的设置对话框,将职称和培训前语言测试成绩导入右边的模型列表中,然后按住shift键,将两者全部选中,一起导入模型中,形成培训前测试成绩和职称的交互选项。设置完毕单击“确定”。

图5:单变量:模型
图5:单变量:模型

软件运行后,输出图表。如果自变量与协变量的交互项具有显著性差异,表示各组间回归斜率不同,反之则相同。根据图表数据得知,P值为0.501,大于0.05,不具有显著性差异,说明各组间回归斜率相同。证明协变量与因变量的回归直线平行。

图6:主体间效应检验结果
图6:主体间效应检验结果

3、验证因变量的残差服从正态分布。

先根据数据生成预测值和标准化残差。单击“分析”,选择“一般线性模型”中的“单变量”。在弹出的设置对话框中,因变量、固定因子和协变量的选择依然跟上图一样。

单击“模型”,勾选全因子。单击“保存”,勾选为标准化和标准化。单击“选项”,将职称导入右列的估算平均值中,勾选描述统计、齐性检验和效应量估计。设置完毕单击“确定”。软件运行结束后生成PRE_1和ZRE_1。

图7:单变量:保存
图7:单变量:保存

单击“分析”,选择“描述统计”中的“探索”。因变量选择刚刚生成的ZRE_1,也就是标准化残差。因子列表选择职称。单击“图”的设置按钮,勾选因子级别并置,勾选含检验的正态图。设置完毕单击“确定”。

图8:探索:图
图8:探索:图

软件运行结束后,输出图表。根据表中数据可知,P值均大于0.05,表示数据接近正态分布。证实因变量的残差服从正态分布。

图9:正态检验结果
图9:正态检验结果

以上就是协方差分析条件不满足,协方差分析的适用条件的相关解答。如果想要了解更多,可以前往IBM SPSS Statistics官方网站。

作者:小影

展开阅读全文

标签:IBM SPSS Statistics

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
spss怎么做逐步回归分析 逐步回归分析spss结果解读
spss怎么做逐步回归分析?逐步回归分析是多元线性回归分析的一种,可通过spss回归分析中的“步进”法来做逐步回归分析。本文会运用例子演示逐步回归分析步骤,并进行逐步回归分析spss结果解读。
2022-05-12
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
最新文章
spss去除无效数据方法 spss去除极端值方法
统计学是一门旨在收集、分析和解释数据的学科。在统计学中,数据的准确性和有效性至关重要。然而,有时候我们会遇到无效数据,这些数据可能是错误的、缺失的或者不完整的,它们会对统计结果产生严重的影响。使用SPSS对数据进行统计时,也常常会面对这些问题,关于SPSS去除无效数据方法,SPSS去除极端值方法的内容,本文向大家作简单介绍。
2024-05-08
spss异常值处理办法 spss异常值检验步骤
SPSS异常值检查是数据分析中一个非常重要的步骤。异常值指的是数据集中与其他观测值明显不同的数值。这些异常值可能会对统计分析结果产生影响,使用SPSS进行统计分析前,要对数据进行简单分析,例如查看有无缺失值,进行异常值检验等。有关SPSS异常值处理办法,SPSS异常值检验步骤的内容,本文向大家作简单介绍。
2024-04-24
spss筛选变量不能共线 spss筛选出没有缺失值的样本方法
SPSS是一种强大的统计分析软件,广泛应用于各种研究领域。在进行数据分析时,研究人员经常会遇到共线性问题。共线性是指自变量之间存在高度相关性的情况,这可能会导致模型不稳定、参数估计不准确甚至无法得出有效的结论。因此,共线性诊断和筛选变量在SPSS中变得尤为重要。有关SPSS筛选变量不能共线,SPSS筛选出没有缺失值的样本方法的内容,本文向大家作简单介绍。
2024-04-17
spss筛选功能在什么地方 spss筛选怎么做
SPSS软件是一款被广泛应用于数据分析和统计学习领域的工具。在数据处理过程中,筛选是一个非常重要的步骤,它可以帮助用户快速地找到所需的数据并进行进一步的分析。SPSS软件提供了强大的筛选功能,使用户能够轻松地筛选出符合特定条件的数据,从而提高数据处理的效率和准确性。SPSS筛选功能在什么地方,SPSS筛选怎么做,本文向大家作简单介绍。
2024-04-10
SPSS赋值怎么操作 SPSS赋值反了怎么修改
SPSS是一款平价的数据分析与统计软件,即使是学生也可以承担软件的价格。往变量中输入数据被称为为变量赋值,这是SPSS的基础操作,也是重要的操作之一。数据的精确度就是依据于我们在软件中对于变量的赋值要求,这些都需要仔细设置。下面将为大家介绍SPSS赋值怎么操作,SPSS赋值反了怎么修改的相关内容。
2024-04-03
spss估算边际均值图怎么做 spss估算边际均值图怎么得到
SPSS(StatisticalProductandServiceSolutions)作为一款常用的统计分析软件,其功能强大且操作简便,广泛应用于各个领域的数据分析中。本文将介绍spss估算边际均值图怎么做,spss估算边际均值图怎么得到的内容。
2024-03-29

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: