IBM SPSS Statistics 中文网站 > 使用技巧 > 协方差分析条件不满足  协方差分析的适用条件

协方差分析条件不满足  协方差分析的适用条件

发布时间:2022/02/21 14:13:05

品牌型号:联想

系统:Win 10

软件版本:IBM SPSS Statistics

关键词:协方差分析,协变量,数据分析

协方差分析在应用的时候,需要满足一定的条件,否则得出的结果不具备参考性。只有核心条件满足时,协方差分析才有参考意义。下面给大家介绍一下协方差分析条件不满足,协方差分析的适用条件的相关解答。

  1. 协方差分析条件不满足

在实验过程中,会受到干扰因素的影响,这些干扰因素被称为协变量。在进行数据分析时,增添协变量以控制其对实验结果的影响。

图1:协方差分析
图1:协方差分析

在进行协方差分析之前,实验变量需要满足一定的条件。

  1. 协变量是连续变量。
  2. 自变量有2个或两个以上的分组。
  3. 因变量是连续变量。
  4. 协变量与因变量之间是线性关系。
  5. 协变量和因变量的回归直线平行。
  6. 因变量的残差服从正态分布。

二、协方差分析的适用条件

协方差分析的使用条件有6个,其中1、2、3可以根据数据直接判断出来。4、5、6条件需要进行分析。

具体操作如下:

  1. 验证协变量与因变量之间是线性关系。

打开SPSS软件,将数据文件导入。

图2:导入文件
图2:导入文件

首先,根据数据绘制出散点图,由散点图得到拟合曲线,验证协变量和因变量是否是线性关系。鼠标单击“图形”,选择“图表构建器”。随后弹出名为“图表构建器”的设置对话框。

在这个对话框里,选择散点图,双击第二个图标激活。横坐标选择培训前测试成绩,纵坐标选择培训后测试成绩。右上角的方框选择职称。元素属性中,选择纵坐标,将最小值的对勾取消。设置完成单击“确定”。

图3:散点图设置
图3:散点图设置

数据分析结束后,会得到散点图,双击散点图将其激活,打开名为图标编辑器的设置对话框。在这里,单击元素,选择子组拟合线,就可以得到协变量和因变量的线性关系图了。证明协变量与因变量存在线性关系。

图4:子组拟合线
图4:子组拟合线

  1. 验证协变量和因变量回归直线平行。

单击“分析”,选择“一般线性模型”中的“单变量”。打开名为“单变量”的设置对话框。在因变量中选择培训后语言成绩,固定因子选择职称,协变量选择培训前语言测试成绩。

单击模型选项,打开名为“单变量:模型”的设置对话框,将职称和培训前语言测试成绩导入右边的模型列表中,然后按住shift键,将两者全部选中,一起导入模型中,形成培训前测试成绩和职称的交互选项。设置完毕单击“确定”。

图5:单变量:模型
图5:单变量:模型

软件运行后,输出图表。如果自变量与协变量的交互项具有显著性差异,表示各组间回归斜率不同,反之则相同。根据图表数据得知,P值为0.501,大于0.05,不具有显著性差异,说明各组间回归斜率相同。证明协变量与因变量的回归直线平行。

图6:主体间效应检验结果
图6:主体间效应检验结果

3、验证因变量的残差服从正态分布。

先根据数据生成预测值和标准化残差。单击“分析”,选择“一般线性模型”中的“单变量”。在弹出的设置对话框中,因变量、固定因子和协变量的选择依然跟上图一样。

单击“模型”,勾选全因子。单击“保存”,勾选为标准化和标准化。单击“选项”,将职称导入右列的估算平均值中,勾选描述统计、齐性检验和效应量估计。设置完毕单击“确定”。软件运行结束后生成PRE_1和ZRE_1。

图7:单变量:保存
图7:单变量:保存

单击“分析”,选择“描述统计”中的“探索”。因变量选择刚刚生成的ZRE_1,也就是标准化残差。因子列表选择职称。单击“图”的设置按钮,勾选因子级别并置,勾选含检验的正态图。设置完毕单击“确定”。

图8:探索:图
图8:探索:图

软件运行结束后,输出图表。根据表中数据可知,P值均大于0.05,表示数据接近正态分布。证实因变量的残差服从正态分布。

图9:正态检验结果
图9:正态检验结果

以上就是协方差分析条件不满足,协方差分析的适用条件的相关解答。如果想要了解更多,可以前往IBM SPSS Statistics官方网站。

作者:小影

标签:IBM SPSS Statistics

读者也访问过这里:
SPSS Statistics
一款功能强大的数据统计分析工具
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS进行变量赋值的相关操作
变量和个案是IBM SPSS数据界面很重要的两个部分,可以形象理解为地球仪上的经线和纬线。通俗一点讲数据界面的每一列是一种变量,如年龄性别等。一行中的所有变量又构成了一个个案,本篇文章着重讲解变量,个案就不做过多展开。在图1中有具体的标注,可以看一下变量和个案到底是什么样。
2021-02-23
如何通过SPSS对问卷进行效度分析
效度分析是指测量的根据或手段(在问卷中为问卷题目)是否能有效检测所需测量事物的程度,是问卷分析中几乎必须进行的一个环节,效度分析分为内容效度、准则效度和结构效度,问卷分析一般所使用的效度分析一般是结构效度。通过数据分析软件IBM SPSS Statistics(win)的效度分析功能我们可轻松获得关于问卷的效度分析结果,帮助我们更好设计或评估问卷。那么如何通过IBM SPSS Statistics对问卷进行效度分析。
2021-10-26