SPSS > 使用技巧 > spss相关性分析怎么做 spss相关性多少算显著

spss相关性分析怎么做 spss相关性多少算显著

发布时间:2022-09-13 10: 23: 59

品牌型号:Dell N5010

系统:Windows 10

软件版本:IBM SPSS Statistics

调查一个变量是否随另一个变量变化,我们可以对两者进行相关性分析,需要用户了解的是相关性分析不是因果关系分析,相关性分析可以描述两个变量的变化情况,以及相关性是否具有统计学意义。我们一般借助IBM SPSS Satatistics进行相关性分析,关于spss相关性分析怎么做,spss相关性多少算显著的问题,本文结合实例向大家做简单说明。

一、spss相关性分析怎么做

为了便于大家的理解,这里列举一个实例。某社会调查小组统计了某大学2020届男女生的党员人数,分析政治面貌与性别是否存在相关性。调查数据如图1所示。

调查数据
图1调查数据

为了数据录入方便我们将男性赋值为1,女性赋值为0,党员赋值为1,群众赋值为0,向IBM SPSS Statistics中录入数据如图2所示。

录入统计数据
图2 录入统计数据

首先对人数进行加权操作,在图3所示界面,点击【数据】,【个案加权】,在弹出的窗口中勾选个案加权系数选项,将人数加入频率变量,点击确定。

进行个案加权
图3 进行个案加权

在图4所示界面,点击【分析】,【描述统计】,【交叉表】。

进入交叉表分析
图4 进入交叉表分析

在交叉表界面,如图5所示,将政治面貌加入行,将性别加入列,然后点击统计按钮,勾选卡方,点击继续,点击确定,SPSS将进行相关性分析,并将结果输出至查看器。

交叉表分析
图5 交叉表分析

在输出结果中,我们需要关注卡方检验的显著性,显著性水平多少时能够确定两者存在相关性,还有哪些信息值得我们关注,我们在第二小节中向大家介绍。

二、SPSS相关性多少算显著

首先在交叉表中,我们可以了解性别,政治面貌各自所占的比例,如,群众中,女同学占50.2%,男同学占49.8%等,我们可以对数据分布有总体的了解。

交叉制表
图6 交叉制表

在卡方检验结果中,我们需要关注皮尔逊卡方的渐进显著性(双侧),显著性小于0.05,说明两者不相关的假设是不成立的,认为两者之间存在相关关系,显著性小于大于0.05,两者不相关的假设成立。

本例中,P=0.043,小于0.05,因此认为两者之间存在相关关系。

卡方检验结果
图7 卡方检验结果

本文开始时提及,相关关系并非因果关系,政治面貌与性别存在相关关系,可能是由于女生成绩较好,而并非男生不愿意加入党组织。另外一方面,我们了解了政治面貌与性别存在相关关系,如何确定这种关系的强弱呢?我们在第三小节中向大家介绍。

三、SPSS相关关系定向测量

想确定相关关系的强弱,需要测量Lambda系数,方法是在图8所示界面,勾选Lambda系数计算选项,然后按照第一小节中方法,进行相关性分析。

勾选Lambda系数计算选项
图8 勾选Lambda系数计算选项

在分析结果中,会多出图9所示的定向测量表,由于我们将政治面貌作为因变量,所以我们应该关注Lambda政治面貌因变量行,其值为0.371,显著性为0,小于0.05,提示政治面貌和性别存在一定的相关关系,且有统计学意义。

定向测量表
图9 定向测量表

本文向大家介绍了SPSS相关性分析怎么做,SPSS相关性多少算显著,相关性分析中变量间相关性强弱的计算方法。相关性是否显著是通过卡方检验完成的,显著性小于0.05,提示两者间相关关系有统计学意义。相关性强弱可通过测量Lambda系数确定,Lambda系数较大,显著性小于0.05,提示变量间存在有统计学意义的相关关系。

 

作者:莱阳黎曼

展开阅读全文

标签:SPSSIBM SPSS StatisticsSPSS教程相关性分析相关性分析方法

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS变量类型怎么修改 SPSS变量标签修改后分析报错怎么办
在数据分析这个领域中,我们经常会面临着修改数据变量类型的情况。因为在一组数据变量中会存在着多种不同的变量类型(自变量、因变量、定类变量、定序变量等),这些变量类型在数据样本中担任着不同的角色,在样本分析中也有着不同的作用。下面就以SPSS数据分析软件为例,给大家介绍SPSS变量类型怎么修改,SPSS变量标签修改后分析报错怎么办的具体内容。
2026-01-14
SPSS如何导出分析报告 SPSS报表内容丢失怎么修复
数据分析报告作为承载着数据分析结果的重要内容,既起到了数据样本分析总结的作用,又可以将这部分数据分析结果应用到其他的领域和研究当中(可以作为重要的数据样本参考)。所以导出数据分析报告和修复丢失的数据就成为了数据分析中的一个重要环节,下面以SPSS为例,向大家介绍SPSS如何导出分析报告,SPSS报表内容丢失怎么修复的具体内容。
2026-01-14
SPSS协方差结构怎样设定 SPSS协方差结构拟合应如何比较
在数据分析的领域当中,协方差结构是一项重要的分析方式。作为着重分析同一数据集在不同变量之间相互关系的分析法,协方差结构在实际应用的过程中回答了一部分数据点位发生变化的时候,另一部分点位会以什么样的形式跟随变化。而协方差结构的拟合数据同样可以帮助我们观察数据的变化趋势。下面以SPSS为例,给大家介绍SPSS协方差结构怎样设定,SPSS协方差结构拟合应如何比较的具体内容。
2026-01-14
SPSS残差正态怎样检验 SPSS残差正态QQ图应如何判读
每当我们在对采集的数据样本进行回归分析或者方差检验的时候,都需要遵守数据检验的一个前提:模型的残差需要服从近似正态分布的规律。所以说残差的正态分布相当于整个数据样本的底座和基石,没有正态分布的规律,就无法进行后续的正态检验和分析。而在使用SPSS进行残差正态分析的时候,同样会面临如何检验以及判读QQ图的情况。下面给大家介绍SPSS残差正态怎样检验,SPSS残差正态QQ图应如何判读的具体内容。
2026-01-14
SPSS曲线回归分析的基本原理 SPSS曲线回归分析结果解读
我们在对一组数据样本进行分析的时候,曲线回归分析是其中不可缺少的一个环节。曲线回归分析作为数据分析中的一项重要操作,主要在评估数据样本之间的关联度以及相互关系时有着广泛应用,这样可以得到数据样本的整体变化趋势以及评估未来的数据发展周期(例如分析销售额和营销成本之间的关系)。而曲线回归的结果对数据样本测算同样有着重要意义,下面以SPSS为例,给大家介绍SPSS曲线回归分析的基本原理,SPSS曲线回归分析结果解读的具体内容。
2026-01-08
SPSS怎么导出结果为Excel SPSS表格导出后乱码怎么办
SPSS既能够帮助我们进行专业的数据分析(包含了回归分析、线性模型分析和缺失值分析等),又可以把数据分析后得到的报告结果进行保存或导出,便于数据分析结果的引用。下面就以SPSS为例,向大家介绍SPSS怎么导出结果为Excel,SPSS表格导出后乱码怎么办的具体内容。
2026-01-08

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: