IBM SPSS Statistics 中文网站 > 使用技巧 > spss相关性分析怎么做 spss相关性多少算显著

spss相关性分析怎么做 spss相关性多少算显著

发布时间:2022-09-13 10: 23: 59

品牌型号:Dell N5010

系统:Windows 10

软件版本:IBM SPSS Statistics

调查一个变量是否随另一个变量变化,我们可以对两者进行相关性分析,需要用户了解的是相关性分析不是因果关系分析,相关性分析可以描述两个变量的变化情况,以及相关性是否具有统计学意义。我们一般借助IBM SPSS Satatistics进行相关性分析,关于spss相关性分析怎么做,spss相关性多少算显著的问题,本文结合实例向大家做简单说明。

一、spss相关性分析怎么做

为了便于大家的理解,这里列举一个实例。某社会调查小组统计了某大学2020届男女生的党员人数,分析政治面貌与性别是否存在相关性。调查数据如图1所示。

调查数据
图1调查数据

为了数据录入方便我们将男性赋值为1,女性赋值为0,党员赋值为1,群众赋值为0,向IBM SPSS Statistics中录入数据如图2所示。

录入统计数据
图2 录入统计数据

首先对人数进行加权操作,在图3所示界面,点击【数据】,【个案加权】,在弹出的窗口中勾选个案加权系数选项,将人数加入频率变量,点击确定。

进行个案加权
图3 进行个案加权

在图4所示界面,点击【分析】,【描述统计】,【交叉表】。

进入交叉表分析
图4 进入交叉表分析

在交叉表界面,如图5所示,将政治面貌加入行,将性别加入列,然后点击统计按钮,勾选卡方,点击继续,点击确定,SPSS将进行相关性分析,并将结果输出至查看器。

交叉表分析
图5 交叉表分析

在输出结果中,我们需要关注卡方检验的显著性,显著性水平多少时能够确定两者存在相关性,还有哪些信息值得我们关注,我们在第二小节中向大家介绍。

二、SPSS相关性多少算显著

首先在交叉表中,我们可以了解性别,政治面貌各自所占的比例,如,群众中,女同学占50.2%,男同学占49.8%等,我们可以对数据分布有总体的了解。

交叉制表
图6 交叉制表

在卡方检验结果中,我们需要关注皮尔逊卡方的渐进显著性(双侧),显著性小于0.05,说明两者不相关的假设是不成立的,认为两者之间存在相关关系,显著性小于大于0.05,两者不相关的假设成立。

本例中,P=0.043,小于0.05,因此认为两者之间存在相关关系。

卡方检验结果
图7 卡方检验结果

本文开始时提及,相关关系并非因果关系,政治面貌与性别存在相关关系,可能是由于女生成绩较好,而并非男生不愿意加入党组织。另外一方面,我们了解了政治面貌与性别存在相关关系,如何确定这种关系的强弱呢?我们在第三小节中向大家介绍。

三、SPSS相关关系定向测量

想确定相关关系的强弱,需要测量Lambda系数,方法是在图8所示界面,勾选Lambda系数计算选项,然后按照第一小节中方法,进行相关性分析。

勾选Lambda系数计算选项
图8 勾选Lambda系数计算选项

在分析结果中,会多出图9所示的定向测量表,由于我们将政治面貌作为因变量,所以我们应该关注Lambda政治面貌因变量行,其值为0.371,显著性为0,小于0.05,提示政治面貌和性别存在一定的相关关系,且有统计学意义。

定向测量表
图9 定向测量表

本文向大家介绍了SPSS相关性分析怎么做,SPSS相关性多少算显著,相关性分析中变量间相关性强弱的计算方法。相关性是否显著是通过卡方检验完成的,显著性小于0.05,提示两者间相关关系有统计学意义。相关性强弱可通过测量Lambda系数确定,Lambda系数较大,显著性小于0.05,提示变量间存在有统计学意义的相关关系。

 

作者:莱阳黎曼

展开阅读全文

标签:SPSSIBM SPSS StatisticsSPSS教程相关性分析相关性分析方法

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
spss怎么做逐步回归分析 逐步回归分析spss结果解读
spss怎么做逐步回归分析?逐步回归分析是多元线性回归分析的一种,可通过spss回归分析中的“步进”法来做逐步回归分析。本文会运用例子演示逐步回归分析步骤,并进行逐步回归分析spss结果解读。
2022-05-12
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
最新文章
spss矩阵散点图怎么做 spss矩阵散点图怎么看相关性
随着经济社会的发展,人们愈加重视数据的作用,数据可视化作为应用的热点,已经渗透到生产生活的各个方面。矩阵散点图可以直观反映多变量间相互关系,是数据可视化的具体应用。关于SPSS矩阵散点图怎么做,SPSS矩阵散点图怎么看相关性,本文借助实例向大家作简单介绍。
2023-12-01
spss合并文件的操作步骤 spss合并文件变量怎么配对
可以使用两种方式合并两个数据文件中的数据,一是包含相同个案但不同变量的数据集,另一个是包含相同变量但不同个案的数据集,本文主要向大家介绍如何合并包含相同个案但不同变量的数据集。关于SPSS合并文件的操作步骤是什么,SPSS合并文件变量怎么配对,结合实例,向大家作简单介绍。
2023-11-06
spss计算变量如何计算平方 spss计算变量如何全选
以变量为单位管理并处理数据,是使用SPSS进行建模统计分析的基础。对于有经验的数据分析工作者,这部分工作要占整个统计分析工作的70%以上。管理变量大致包括两部分内容,变量赋值(或称为变量计算)和变量转化。本文主要向大家介绍变量计算的内容,例如SPSS计算变量如何计算平方,SPSS计算变量如何全选。
2023-11-04
spss卡方检验结果线性关联是什么 spss卡方检验结果没有连续性校正
对于两组连续性变量,一般通过回归分析判断两者是否存在相关关系。对于离散型变量,则需借助卡方检验判断两者之间是否存在相关关系。变量数据类型不同,SPSS卡方检验提供的结果形式也有所不同,因此很多用户会感到不解。本文结合实例向大家介绍SPSS卡方检验结果线性关联是什么,SPSS卡方检验结果没有连续性校正原因是什么。
2023-11-02
spss回归分析如何操作 spss回归分析的基本步骤
通过回归分析,可以了解变量间是否存在相互依赖的定量关系。根据方程类型,回归分析可以分为线性回归和非线性回归。根据变量的数目多少,回归分析可以分为一元回归分析和多元回归分析。本文以最简单的一元线性回归分析为例向大家介绍SPSS回归分析如何操作,SPSS回归分析的基本步骤。
2023-10-31
spss方差齐性检验如何操作 spss方差齐性检验怎么看方差齐不齐
方差的大小代表了数据分布的离散程度,方差大,数据分布越分散,方差小,数据分布越集中。组间数据分布离散程度差别较大时,是不能进行比较的,此时不能确定两组数据的差异来源于组间还是组内,因此方差齐性检验是进行组间数据比较的基础。关于SPSS方差齐性检验如何操作,SPSS方差齐性检验怎么看方差齐不齐,本文借助实例,向大家作简单介绍。
2023-10-25

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: