IBM SPSS Statistics 中文网站 > 使用技巧 > spss相关性分析怎么做 spss相关性多少算显著

spss相关性分析怎么做 spss相关性多少算显著

发布时间:2022-09-13 10: 23: 59

品牌型号:Dell N5010

系统:Windows 10

软件版本:IBM SPSS Statistics

调查一个变量是否随另一个变量变化,我们可以对两者进行相关性分析,需要用户了解的是相关性分析不是因果关系分析,相关性分析可以描述两个变量的变化情况,以及相关性是否具有统计学意义。我们一般借助IBM SPSS Satatistics进行相关性分析,关于spss相关性分析怎么做,spss相关性多少算显著的问题,本文结合实例向大家做简单说明。

一、spss相关性分析怎么做

为了便于大家的理解,这里列举一个实例。某社会调查小组统计了某大学2020届男女生的党员人数,分析政治面貌与性别是否存在相关性。调查数据如图1所示。

调查数据
图1调查数据

为了数据录入方便我们将男性赋值为1,女性赋值为0,党员赋值为1,群众赋值为0,向IBM SPSS Statistics中录入数据如图2所示。

录入统计数据
图2 录入统计数据

首先对人数进行加权操作,在图3所示界面,点击【数据】,【个案加权】,在弹出的窗口中勾选个案加权系数选项,将人数加入频率变量,点击确定。

进行个案加权
图3 进行个案加权

在图4所示界面,点击【分析】,【描述统计】,【交叉表】。

进入交叉表分析
图4 进入交叉表分析

在交叉表界面,如图5所示,将政治面貌加入行,将性别加入列,然后点击统计按钮,勾选卡方,点击继续,点击确定,SPSS将进行相关性分析,并将结果输出至查看器。

交叉表分析
图5 交叉表分析

在输出结果中,我们需要关注卡方检验的显著性,显著性水平多少时能够确定两者存在相关性,还有哪些信息值得我们关注,我们在第二小节中向大家介绍。

二、SPSS相关性多少算显著

首先在交叉表中,我们可以了解性别,政治面貌各自所占的比例,如,群众中,女同学占50.2%,男同学占49.8%等,我们可以对数据分布有总体的了解。

交叉制表
图6 交叉制表

在卡方检验结果中,我们需要关注皮尔逊卡方的渐进显著性(双侧),显著性小于0.05,说明两者不相关的假设是不成立的,认为两者之间存在相关关系,显著性小于大于0.05,两者不相关的假设成立。

本例中,P=0.043,小于0.05,因此认为两者之间存在相关关系。

卡方检验结果
图7 卡方检验结果

本文开始时提及,相关关系并非因果关系,政治面貌与性别存在相关关系,可能是由于女生成绩较好,而并非男生不愿意加入党组织。另外一方面,我们了解了政治面貌与性别存在相关关系,如何确定这种关系的强弱呢?我们在第三小节中向大家介绍。

三、SPSS相关关系定向测量

想确定相关关系的强弱,需要测量Lambda系数,方法是在图8所示界面,勾选Lambda系数计算选项,然后按照第一小节中方法,进行相关性分析。

勾选Lambda系数计算选项
图8 勾选Lambda系数计算选项

在分析结果中,会多出图9所示的定向测量表,由于我们将政治面貌作为因变量,所以我们应该关注Lambda政治面貌因变量行,其值为0.371,显著性为0,小于0.05,提示政治面貌和性别存在一定的相关关系,且有统计学意义。

定向测量表
图9 定向测量表

本文向大家介绍了SPSS相关性分析怎么做,SPSS相关性多少算显著,相关性分析中变量间相关性强弱的计算方法。相关性是否显著是通过卡方检验完成的,显著性小于0.05,提示两者间相关关系有统计学意义。相关性强弱可通过测量Lambda系数确定,Lambda系数较大,显著性小于0.05,提示变量间存在有统计学意义的相关关系。

 

作者:莱阳黎曼

展开阅读全文

标签:SPSSIBM SPSS StatisticsSPSS教程相关性分析相关性分析方法

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
spss怎么做逐步回归分析 逐步回归分析spss结果解读
spss怎么做逐步回归分析?逐步回归分析是多元线性回归分析的一种,可通过spss回归分析中的“步进”法来做逐步回归分析。本文会运用例子演示逐步回归分析步骤,并进行逐步回归分析spss结果解读。
2022-05-12
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
最新文章
spss去除无效数据方法 spss去除极端值方法
统计学是一门旨在收集、分析和解释数据的学科。在统计学中,数据的准确性和有效性至关重要。然而,有时候我们会遇到无效数据,这些数据可能是错误的、缺失的或者不完整的,它们会对统计结果产生严重的影响。使用SPSS对数据进行统计时,也常常会面对这些问题,关于SPSS去除无效数据方法,SPSS去除极端值方法的内容,本文向大家作简单介绍。
2024-05-08
spss异常值处理办法 spss异常值检验步骤
SPSS异常值检查是数据分析中一个非常重要的步骤。异常值指的是数据集中与其他观测值明显不同的数值。这些异常值可能会对统计分析结果产生影响,使用SPSS进行统计分析前,要对数据进行简单分析,例如查看有无缺失值,进行异常值检验等。有关SPSS异常值处理办法,SPSS异常值检验步骤的内容,本文向大家作简单介绍。
2024-04-24
spss筛选变量不能共线 spss筛选出没有缺失值的样本方法
SPSS是一种强大的统计分析软件,广泛应用于各种研究领域。在进行数据分析时,研究人员经常会遇到共线性问题。共线性是指自变量之间存在高度相关性的情况,这可能会导致模型不稳定、参数估计不准确甚至无法得出有效的结论。因此,共线性诊断和筛选变量在SPSS中变得尤为重要。有关SPSS筛选变量不能共线,SPSS筛选出没有缺失值的样本方法的内容,本文向大家作简单介绍。
2024-04-17
spss筛选功能在什么地方 spss筛选怎么做
SPSS软件是一款被广泛应用于数据分析和统计学习领域的工具。在数据处理过程中,筛选是一个非常重要的步骤,它可以帮助用户快速地找到所需的数据并进行进一步的分析。SPSS软件提供了强大的筛选功能,使用户能够轻松地筛选出符合特定条件的数据,从而提高数据处理的效率和准确性。SPSS筛选功能在什么地方,SPSS筛选怎么做,本文向大家作简单介绍。
2024-04-10
SPSS赋值怎么操作 SPSS赋值反了怎么修改
SPSS是一款平价的数据分析与统计软件,即使是学生也可以承担软件的价格。往变量中输入数据被称为为变量赋值,这是SPSS的基础操作,也是重要的操作之一。数据的精确度就是依据于我们在软件中对于变量的赋值要求,这些都需要仔细设置。下面将为大家介绍SPSS赋值怎么操作,SPSS赋值反了怎么修改的相关内容。
2024-04-03
spss估算边际均值图怎么做 spss估算边际均值图怎么得到
SPSS(StatisticalProductandServiceSolutions)作为一款常用的统计分析软件,其功能强大且操作简便,广泛应用于各个领域的数据分析中。本文将介绍spss估算边际均值图怎么做,spss估算边际均值图怎么得到的内容。
2024-03-29

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: