IBM SPSS Statistics 中文网站 > 使用技巧 > 如何使用SPSS进行土壤主成分优劣分析

如何使用SPSS进行土壤主成分优劣分析

发布时间:2021-08-13 11: 37: 24

在许多数据分析案例中,往往有许多种不同变量或因素共同影响最终结果,为了探究多变量或因素对实验结果的影响,我们常常会对数据进行主成分分析,将具有一定相关关系的变量重新组合划分为几组互不相关的新变量,作为影响结果的几种主成分,即新的综合指标来分析结果。本节将会带大家学习如何使用SPSS进行主成分分析。需要注意的是,进行主成分分析要满足两个条件:变量是连续变量或有序分类变量,且变量之间存在线性相关关系。

一、打开数据文件

本例中我们使用的是IBM SPSS Statistics 28.0.0.0 Windows版本。本例子以种植了玉米、花生、甘蔗三种不同作物的土壤成分为例,探究种植有不同作物的土壤成分综合评价。

如图1所示,展示的是三种不同的土壤中各主要成分的具体含量。需要注意,示例数据中的土壤成分变量使用的是字符串值,我们需要先将字符串转换为数值,才能进行下一步操作。

图1 示例数据
图1 示例数据

二、进行主成分分析

点击菜单栏中的“分析”,选择“降维”中的“因子”分析。

图2 选择因子分析
图2 选择因子分析

在弹出的选项框中,将变量数据栏全部加入到右侧变量的方框。

图3 添加变量
图3 添加变量

然后设置右侧栏中的选项,需要更改的各项设置如下:

图4 更改“描述”
图4 更改“描述”

图5 更改“得分”
图5 更改“得分”

更改完设置后点击确定,进行数据分析。

三、结果分析

(1)相关矩阵表明,各项指标之间具有强相关性。一般来说,如果相关型矩阵中显示的相关系数的数值大于等于0.3,我们就可以认为变量之间存在较好的线性相关性。通过线性相关性的验证,表明这几种变量的指标信息之间存在重叠,因此适合采用主成分分析法。

图6 相关性矩阵
图6 相关性矩阵

(2)总方差解释表格

图7 总方差解释
图7 总方差解释

由表格可以看出,初始特征值>1的成分有2个,因此可以提取出2个主成分,来作为新的综合指标来分析土壤肥力状况。这两个成分记为主成分1、主成分2,从表格数据得到他们的初始特征值依次为4.992、3.008;方差贡献率依次为62.399%、37.601%,总和为100%。

表中可知主成分提取载荷平方和分别为4.992,3.008,因此求算术平方根,算出主成分1、2的提取载荷为(仅举例列出三位小数,计算时应更加精确)2.234、1.734。

这两项数据在后续分析中要用到,在此需要记录。

(3)点开之前录有数据的SPSS界面,在最右边可以看见新生成有两列数据,即主成分因子得分(FAC),分别为因子得分1、因子得分2。

图8 主成分因子得分
图8 主成分因子得分

(4)计算各主成分得分。

主成分1得分F1=因子得分1*主成分1提取载荷,以此类推F2。计算得出主成分得分F1与F2。

最后计算综合评价得分Y,即按照各主成分的方差贡献率对各主成分得分进行加权平均:综合评价得分Y=(F1*主成分1方差贡献率+F2*主成分2方差贡献率+F3*主成分3方差贡献率)/(主成分1、2、3的方差贡献率总和)(由方差解释表中可以得到主成分的方差贡献率),得到:

图9 主成分得分F与综合评价得分Y
图9 主成分得分F与综合评价得分Y

可以看出,在三种土壤中,种植甘蔗的土壤综合评价得分最高,其次是花生,最后是玉米。以上就是本期的相关SPSS教程了,欢迎访问IBM SPSS Statistics中文网站,掌握更多软件技巧。

作者:墨厝

展开阅读全文

标签:SPSS主成分分析卡值

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
spss怎么做逐步回归分析 逐步回归分析spss结果解读
spss怎么做逐步回归分析?逐步回归分析是多元线性回归分析的一种,可通过spss回归分析中的“步进”法来做逐步回归分析。本文会运用例子演示逐步回归分析步骤,并进行逐步回归分析spss结果解读。
2022-05-12
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
最新文章
SPSS项目分析怎么做 SPSS项目分析包括哪些方面
项目分析也被称作区分度分析,主要用于探究一个题项是否有存在的必要,是分析对于一个题项在有人给出高分时是否有人给出低分,简而言之就是探究高低分的受试者在不同题项的差异。那么SPSS项目分析怎么做,SPSS项目分析包括哪些方面呢?下面为大家详细介绍一下相关内容。
2024-03-01
SPSS三组数据计算p值 SPSS三组数据相关性分析步骤
在统计学和数据分析领域,SPSS是一个强大而广泛使用的工具,特别是在处理大量数据和进行复杂分析时。本文将重点介绍SPSS中如何进行三组数据的p值计算和相关性分析,为研究人员提供一种详细的步骤来解释他们的研究结果。下面我们就来看看SPSS三组数据计算p值,SPSS三组数据相关性分析步骤的相关内容。
2024-02-21
SPSS窗口怎么缩小 SPSS窗口怎么放大
在使用SPSS时,许多用户可能会遇到调整SPSS窗口大小的问题。不同的屏幕分辨率和个人喜好可能导致SPSS窗口显得过大或过小,影响到数据分析的效率和舒适度。下面我们来看看SPSS窗口怎么缩小,SPSS窗口怎么放大的相关内容。
2024-02-07
SPSS结果输出窗口怎么打开 SPSS结果输出窗口不显示
在使用SPSS进行数据分析时,结果输出窗口是一个至关重要的工具。然而,有时用户可能会遇到一些问题,其中之一就是结果输出窗口无法显示的情况。下面我们就来看看SpSS结果输出窗口怎么打开,SPSS结果输出窗口不显示的内容。
2024-02-07
spss曲线估计如何得出公式 spss曲线估计结果怎么看
曲线估计或称为回归分析,是寻求因变量和自变量之间定量关系的统计分析方法。根据方程的类型不同,可分为线性回归或非线性回归。根据自变量的数目,可以分为一元回归分析或多元回归分析。回归分析需要进行诸多统计学检验,本文不介绍这部分内容,大家可以登录IBM SPSS Statistics中文网站学习,本文主要向大家介绍求解回归曲线的方法。关于SPSS曲线估计如何得出公式,SPSS曲线估计结果怎么看,本文借助实例,向大家作简单介绍。
2024-02-07
SPSS相关性表格怎么分析 SPSS相关性表格怎么导出
IBM SPSS Statistics软件可以用于数据分析,制作相关性表格。将SPSS软件和excel软件结合使用可以得到更好的效果,使用excel软件对表格进行美化,SPSS软件可以更高效准确对数据分析。下面将为大家讲一讲有关SPSS相关性表格怎么分析,SPSS相关性表格怎么导出的内容。
2024-02-07

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: