IBM SPSS Statistics 中文网站 > 使用技巧 > 如何使用SPSS进行土壤主成分优劣分析

如何使用SPSS进行土壤主成分优劣分析

发布时间:2021/08/13 11:37:24

在许多数据分析案例中,往往有许多种不同变量或因素共同影响最终结果,为了探究多变量或因素对实验结果的影响,我们常常会对数据进行主成分分析,将具有一定相关关系的变量重新组合划分为几组互不相关的新变量,作为影响结果的几种主成分,即新的综合指标来分析结果。本节将会带大家学习如何使用SPSS进行主成分分析。需要注意的是,进行主成分分析要满足两个条件:变量是连续变量或有序分类变量,且变量之间存在线性相关关系。

一、打开数据文件

本例中我们使用的是IBM SPSS Statistics 28.0.0.0 Windows版本。本例子以种植了玉米、花生、甘蔗三种不同作物的土壤成分为例,探究种植有不同作物的土壤成分综合评价。

如图1所示,展示的是三种不同的土壤中各主要成分的具体含量。需要注意,示例数据中的土壤成分变量使用的是字符串值,我们需要先将字符串转换为数值,才能进行下一步操作。

图1 示例数据
图1 示例数据

二、进行主成分分析

点击菜单栏中的“分析”,选择“降维”中的“因子”分析。

图2 选择因子分析
图2 选择因子分析

在弹出的选项框中,将变量数据栏全部加入到右侧变量的方框。

图3 添加变量
图3 添加变量

然后设置右侧栏中的选项,需要更改的各项设置如下:

图4 更改“描述”
图4 更改“描述”

图5 更改“得分”
图5 更改“得分”

更改完设置后点击确定,进行数据分析。

三、结果分析

(1)相关矩阵表明,各项指标之间具有强相关性。一般来说,如果相关型矩阵中显示的相关系数的数值大于等于0.3,我们就可以认为变量之间存在较好的线性相关性。通过线性相关性的验证,表明这几种变量的指标信息之间存在重叠,因此适合采用主成分分析法。

图6 相关性矩阵
图6 相关性矩阵

(2)总方差解释表格

图7 总方差解释
图7 总方差解释

由表格可以看出,初始特征值>1的成分有2个,因此可以提取出2个主成分,来作为新的综合指标来分析土壤肥力状况。这两个成分记为主成分1、主成分2,从表格数据得到他们的初始特征值依次为4.992、3.008;方差贡献率依次为62.399%、37.601%,总和为100%。

表中可知主成分提取载荷平方和分别为4.992,3.008,因此求算术平方根,算出主成分1、2的提取载荷为(仅举例列出三位小数,计算时应更加精确)2.234、1.734。

这两项数据在后续分析中要用到,在此需要记录。

(3)点开之前录有数据的SPSS界面,在最右边可以看见新生成有两列数据,即主成分因子得分(FAC),分别为因子得分1、因子得分2。

图8 主成分因子得分
图8 主成分因子得分

(4)计算各主成分得分。

主成分1得分F1=因子得分1*主成分1提取载荷,以此类推F2。计算得出主成分得分F1与F2。

最后计算综合评价得分Y,即按照各主成分的方差贡献率对各主成分得分进行加权平均:综合评价得分Y=(F1*主成分1方差贡献率+F2*主成分2方差贡献率+F3*主成分3方差贡献率)/(主成分1、2、3的方差贡献率总和)(由方差解释表中可以得到主成分的方差贡献率),得到:

图9 主成分得分F与综合评价得分Y
图9 主成分得分F与综合评价得分Y

可以看出,在三种土壤中,种植甘蔗的土壤综合评价得分最高,其次是花生,最后是玉米。以上就是本期的相关SPSS教程了,欢迎访问IBM SPSS Statistics中文网站,掌握更多软件技巧。

作者:墨厝

SPSS Statistics
云版首发!秒杀只需1分钱!
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
最新文章
1分钱秒杀!云版大数据统计与应用分析解决方案上线
在经历了数个月的悉心筹备后,云版大数据统计与应用分析解决方案终于要和大家见面了!为了让更多人能体验到本服务,我们特别发起了限量1分钱秒杀活动。
2022-11-24
spss缺失值分析步骤 spss缺失值分析结果怎么看
在数据调查过程中,工作人员常常会遇到数据缺失现象。数据缺失分为三类,随机缺失,完全随机缺失,非随机缺失。无论哪种缺失,都可能导致严重的问题,或者大大降低统计的精度。利用IBM SPSS Statistics可以对数据缺失值进行分析,关于SPSS缺失值分析步骤是怎样的,SPSS缺失值分析结果怎么看的问题?本文结合实例,为大家做简单介绍。
2022-11-24
spss标签值不显示 spss标签值乱码
使用IBM SPSS Statistics进行统计分析的过程中,为了工作便利,常常会为变量设置标签。在设置标签过程中,常常会遇到各种问题,如SPSS标签值不显示,SPSS标签值乱码等问题,这些问题产生的根源是什么?如何解决?本文向大家做简单介绍。
2022-11-21
IBM SPSS Statistics云版本登录使用教程
感谢您订阅IBM SPSS Statistics云版本服务,IBM SPSS Statistics云版本是由思杰马克丁+IBM+阿里云联合推出,帮助用户解决短时间使用正版软件的需求,提供周付费、月付费两种购买模式,性价比极高。那么在购买了IBM SPSS Statistics云版本之后,应该如何登陆使用呢,本篇教程就来告诉大家使用方法。
2022-11-23
spss中t值和p值是什么意思 spss中t值和p值的关系
在统计分析过程中,常常会遇到这样的情况:检验两个相关的样本是否来自具有相同均值的总体,就会用到t检验。t检验(Student's t test),主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布, t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。利用IBM SPSS Statistics统计分析软件进行t检验可以避免繁杂的统计学计算,快速给出结果,供用户分析。SPSS中t值和p值是什么意思,SPSS中t值和p值的关系是什么,本文结合实例,向大家做简单的介绍。
2022-11-16
spss pearson相关性分析步骤 spss pearson相关性分析结果怎么看
Pearson(皮尔逊)相关性指的是联合分布服从二维正态分布的随机变量X,Y之间的简单线性相关关系,X,Y之间的相关关系由简单相关系数r表示。利用IBM SPSS Statistics可以非常快速地完成两个随机变量X,Y间的Pearson(皮尔逊)相关性分析,SPSS Pearson相关性分析步骤是什么,SPSS Pearson相关性分析结果怎么看,本文结合实例,向大家做简单的介绍。
2022-11-14

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容:

咨询热线

在线咨询

限时折扣