SPSS > 使用技巧 > 如何使用SPSS进行土壤主成分优劣分析

如何使用SPSS进行土壤主成分优劣分析

发布时间:2021-08-13 11: 37: 24

在许多数据分析案例中,往往有许多种不同变量或因素共同影响最终结果,为了探究多变量或因素对实验结果的影响,我们常常会对数据进行主成分分析,将具有一定相关关系的变量重新组合划分为几组互不相关的新变量,作为影响结果的几种主成分,即新的综合指标来分析结果。本节将会带大家学习如何使用SPSS进行主成分分析。需要注意的是,进行主成分分析要满足两个条件:变量是连续变量或有序分类变量,且变量之间存在线性相关关系。

一、打开数据文件

本例中我们使用的是IBM SPSS Statistics 28.0.0.0 Windows版本。本例子以种植了玉米、花生、甘蔗三种不同作物的土壤成分为例,探究种植有不同作物的土壤成分综合评价。

如图1所示,展示的是三种不同的土壤中各主要成分的具体含量。需要注意,示例数据中的土壤成分变量使用的是字符串值,我们需要先将字符串转换为数值,才能进行下一步操作。

图1 示例数据
图1 示例数据

二、进行主成分分析

点击菜单栏中的“分析”,选择“降维”中的“因子”分析。

图2 选择因子分析
图2 选择因子分析

在弹出的选项框中,将变量数据栏全部加入到右侧变量的方框。

图3 添加变量
图3 添加变量

然后设置右侧栏中的选项,需要更改的各项设置如下:

图4 更改“描述”
图4 更改“描述”

图5 更改“得分”
图5 更改“得分”

更改完设置后点击确定,进行数据分析。

三、结果分析

(1)相关矩阵表明,各项指标之间具有强相关性。一般来说,如果相关型矩阵中显示的相关系数的数值大于等于0.3,我们就可以认为变量之间存在较好的线性相关性。通过线性相关性的验证,表明这几种变量的指标信息之间存在重叠,因此适合采用主成分分析法。

图6 相关性矩阵
图6 相关性矩阵

(2)总方差解释表格

图7 总方差解释
图7 总方差解释

由表格可以看出,初始特征值>1的成分有2个,因此可以提取出2个主成分,来作为新的综合指标来分析土壤肥力状况。这两个成分记为主成分1、主成分2,从表格数据得到他们的初始特征值依次为4.992、3.008;方差贡献率依次为62.399%、37.601%,总和为100%。

表中可知主成分提取载荷平方和分别为4.992,3.008,因此求算术平方根,算出主成分1、2的提取载荷为(仅举例列出三位小数,计算时应更加精确)2.234、1.734。

这两项数据在后续分析中要用到,在此需要记录。

(3)点开之前录有数据的SPSS界面,在最右边可以看见新生成有两列数据,即主成分因子得分(FAC),分别为因子得分1、因子得分2。

图8 主成分因子得分
图8 主成分因子得分

(4)计算各主成分得分。

主成分1得分F1=因子得分1*主成分1提取载荷,以此类推F2。计算得出主成分得分F1与F2。

最后计算综合评价得分Y,即按照各主成分的方差贡献率对各主成分得分进行加权平均:综合评价得分Y=(F1*主成分1方差贡献率+F2*主成分2方差贡献率+F3*主成分3方差贡献率)/(主成分1、2、3的方差贡献率总和)(由方差解释表中可以得到主成分的方差贡献率),得到:

图9 主成分得分F与综合评价得分Y
图9 主成分得分F与综合评价得分Y

可以看出,在三种土壤中,种植甘蔗的土壤综合评价得分最高,其次是花生,最后是玉米。以上就是本期的相关SPSS教程了,欢迎访问IBM SPSS Statistics中文网站,掌握更多软件技巧。

作者:墨厝

展开阅读全文

标签:SPSS主成分分析卡值

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS交叉验证方法怎么用 SPSS交叉分析怎么理解
交叉验证是一种多维度的数据分析法,可以将多个变量进行交叉组合,生成二维或多维分析表格,以此展现出变量之间的关联性以及潜在规律。今天我就以SPSS交叉验证方法怎么用,SPSS交叉分析怎么理解这两个问题为例,来向大家讲解一下SPSS中关于交叉验证法的相关知识。
2025-09-18
SPSS数据排序如何设置 SPSS数据排序功能最大值和最小值
数据分析作为SPSS的重要主题,包含了数量计算、数据预测、数值对比等方面,在汇总统计各类数值的基础上,我们常常会需要对数据进行排序比较,而排序就是根据数值的大小来进行排列。本文以SPSS数据排序如何设置,SPSS数据排序功能最大值和最小值这两个问题为例,带大家了解一下SPSS数据排序的知识。
2025-09-18
SPSS数据透视表在哪 SPSS数据透视表怎么做
在数据分析领域,我们如何查看多种数据的汇总情况呢?SPSS的图表编辑功能可以计算、分析、统计各类数值,并用三线透视表的方式来清晰呈现测量结果,这就需要研究者熟悉图表操作的功能,能够对表格的初始格式进行修改与调整。本文以SPSS数据透视表在哪,SPSS数据透视表怎么做这两个问题为例,给大家介绍一下SPSS数据透视表的相关知识。
2025-09-18
SPSS自定义表格怎么设计 SPSS自定义表格行列表头设置方法
对于进行数据分析的研究者来说,SPSS设置的初始表格需要在格式上进行进一步的调整和规范,也就是需要SPSS用户自行设置和修改图表格式,借助SPSS图表编辑的工具来操作。本文以SPSS自定义表格怎么设计,SPSS自定义表格行列表头设置方法这两个问题为例,给大家介绍一下SPSS自定义表格的相关知识。
2025-09-18
SPSS数据加权有什么用 SPSS数据加权与不加权的区别
数据加权是数据分析过程中非常实用的一种数据分析技巧,根据每一项个案要素的重要程度,合理调整它们的总体占比,随后再进行计算,就能得到更加精准的分析结果。今天我就以SPSS数据加权有什么用,SPSS数据加权与不加权的区别这两个问题为例,来向大家讲解一下数据加权的相关知识。
2025-09-18
SPSS线性回归如何构建 SPSS线性回归自变量筛选方法
在数据分析领域,当自变量类型为定序或者定距变量的时候,我们可以借助SPSS线性回归的方法来建立变量之间函数变化关系的模型,这适用于自变量与因变量呈线性关系的情况,有助于后续的数据划分和定义。本文以SPSS线性回归如何构建,SPSS线性回归自变量筛选方法这两个问题为例,给大家介绍一下SPSS线性回归的相关知识。
2025-09-18

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: