SPSS > 使用技巧 > 通过SPSS独立样本T检验,分析两组个案的差异(上)

通过SPSS独立样本T检验,分析两组个案的差异(上)

发布时间:2020-12-10 11: 39: 33

独立样本T检验与平均值检验、单样本T检验、配对样本T检验均属于比较平均值的检验方法。不同的是,独立样本T检验比较的是两组个案的平均值。该检验需要符合随机分布的假定,也就是说,两组个案数据间的差异无其他人为的影响因素。

需要注意的是,“独立样本T检验”检验的是两组个案,而不是两个变量,因此需要构建个案组数据;另外,其分组变量需用数值标识。这两点在IBM SPSS Statistics软件操作中需格外注意。

一、打开数据文件

本例子检验的是饮用牛奶A组与饮用牛奶B组的初中生身高平均值是否有显著性差异。

如图1所示,示例数据展现的是饮用牛奶A与饮用牛奶B两个个案组的身高数据,如您使用的数据是两个变量的变量组数据(即包含饮用牛奶A与饮用牛奶B两个变量的数据),需通过将变量数据转换为个案数据后才能进行后续操作。

但另一方面,示例数据中的饮用牛奶类型变量使用的是字符串值,我们需要先将字符串转换为数值,才能进行独立样本T检验。

图1:示例数据

二、为饮用牛奶类型变量重新编码

如图2所示,打开IBM SPSS Statistics转换菜单中的“重新编码为不同变量”。

图2:重新编码为不同变量

然后,如图3所示,将需要重新编码的“饮用牛奶类型”变量添加到右侧输出变量方框中,并在名称输入框中为其命名为“饮用牛奶类型编码”。

接着,单击“旧值和新值”按钮,匹配旧值与新值。

图3:设置输出变量

如图4所示,在旧值与新值匹配面板中,分别将饮用牛奶A、饮用牛奶B与数值1、2相匹配。

图4:匹配旧值与新值

完成变量的重新编码后,返回数据集,如图5所示,数据中出现了新的变量—饮用牛奶类型编码。

图5:完成变量的重新编码

为了让重新编码后的变量值含义更加明确,如图6所示,我们可以打开变量视图,编辑变量的值标签。

图6:编辑变量的值标签

如图7所示,在值标签设置面板,分别将值1、2标签为饮用牛奶A、饮用牛奶B。


图7:设定标签

如图8所示,返回变量视图,可以看到,值标签已经编辑完成。

图8:完成标签设定

三、应用独立样本检验

完成数据的处理后,就可以打开IBM SPSS Statistics的独立样本T检验功能(分析-比较平均值-独立样本T检验),正式开启数据的检验。

图9:独立样本检验功能

本文中,我们重点讲解了IBM SPSS Statistics独立样本T检验的检验原理、数据要求以及数据转换的方法。下一节,将会通过实际的数据演示该功能的操作。如需获取下一节内容,欢迎访问IBM SPSS Statistics中文网站。

作者:泽洋

展开阅读全文

标签:IBM SPSS Statistics

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS趋势卡方怎么做 SPSS趋势卡方检验怎么看正相关
趋势卡方是SPSS中检验变量相关性的方法之一,当我们的分析数据中存在多个变量时,就可以使用趋势卡方来检验这些变量是否相互关联、相互影响。检验完毕后,我们也可以根据这些检验结果来选择更加合适的数据分析模型。今天我就以SPSS趋势卡方怎么做,SPSS趋势卡方检验怎么看正相关这两个问题为例,来向大家讲解一下趋势卡方的相关知识。
2025-12-17
SPSS如何计算线性回归 SPSS线性回归数据分析
SPSS是一款功能十分强大的数据分析软件,它将原本复杂的数据分析工作变得简洁化,并通过友好的图像界面满足普罗大众的日常需求。而线性回归是SPSS中最核心的功能模块之一。今天我就以SPSS如何计算线性回归,SPSS线性回归数据分析这两个问题为例,来向大家讲解一下有关线性回归的知识。
2025-12-17
SPSS标准化残差怎么计算 SPSS标准化残差图怎么看
回归分析是SPSS中的重量级分析模型,而其中的标准化残差则是用于观察变量与回归模型之间的适配程度。通过残差值,我们可以找到数据中隐藏的极端个案。在医药学、基因分析等领域,实验人员经常借助标准化残差来找寻诸多分析结果中的特殊个案或异变量,进而对这些特殊的案例进行深度研究。今天我就以SPSS标准化残差怎么计算,SPSS标准化残差图怎么看这两个问题为例,来向大家讲解一下有关标准化残差的相关知识。
2025-12-17
SPSS结果中显著性水平怎么看 SPSS输出查看器内容保存方式
作为一款专业的数据分析软件,SPSS软件凭借着自身专业的功能与过硬的数据分析本领,受到了众多用户的青睐。而在使用SPSS的过程中,显著性分析是大家经常会遇到的问题。显著性分析的主要作用是帮助我们分析两组或者多组变量之间的显著性关系,在得到数据显著性分析的结果后,会需要把数据内容进行保存和留用。接下来给大家介绍SPSS结果中显著性水平怎么看,SPSS输出查看器内容保存方式的具体内容。
2025-12-17
如何将问卷星中的数据导入SPSS 如何对问卷星的数据进行SPSS分析
如今无论是在职场还是大学校园,都经常会用到问卷调查。问卷调查可以帮我们快速收集用户数据,了解用户的需求、关注点,帮助我们从数据中分析出研究方向、需要如何改进。而问卷星是常用的用来收集用户问题的问卷调查软件之一。下面就来说说如何将问卷星中的数据导入SPSS,如何对问卷星的数据进行SPSS分析的相关内容。
2025-12-17
SPSS如何计算变量的回归系数 SPSS回归分析中如何加入控制变量
在回归分析的领域中,回归系数通常占据着重要的地位,回归系数的存在相当于让整个回归方程有了方向之分。在回归方程中表示了自变量对因变量影响程度大小的参数,回归系数的大小与自变量和因变量的变化密切相关。当我们需要计算变量的回归系数时,使用SPSS不仅可以计算变量的回归系数,还可以在回归分析中设置控制变量。接下来给大家介绍SPSS如何计算变量的回归系数,SPSS回归分析中如何加入控制变量的具体内容。
2025-12-17

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: