IBM Business Partner

IBM SPSS Statistics 中文网站 > 使用技巧 > 通过SPSS独立样本T检验,分析两组个案的差异(上)

通过SPSS独立样本T检验,分析两组个案的差异(上)

发布时间:2020/12/10

独立样本T检验与平均值检验、单样本T检验、配对样本T检验均属于比较平均值的检验方法。不同的是,独立样本T检验比较的是两组个案的平均值。该检验需要符合随机分布的假定,也就是说,两组个案数据间的差异无其他人为的影响因素。

需要注意的是,“独立样本T检验”检验的是两组个案,而不是两个变量,因此需要构建个案组数据;另外,其分组变量需用数值标识。这两点在IBM SPSS Statistics软件操作中需格外注意。

一、打开数据文件

本例子检验的是饮用牛奶A组与饮用牛奶B组的初中生身高平均值是否有显著性差异。

如图1所示,示例数据展现的是饮用牛奶A与饮用牛奶B两个个案组的身高数据,如您使用的数据是两个变量的变量组数据(即包含饮用牛奶A与饮用牛奶B两个变量的数据),需通过将变量数据转换为个案数据后才能进行后续操作。

但另一方面,示例数据中的饮用牛奶类型变量使用的是字符串值,我们需要先将字符串转换为数值,才能进行独立样本T检验。

图1:示例数据

二、为饮用牛奶类型变量重新编码

如图2所示,打开IBM SPSS Statistics转换菜单中的“重新编码为不同变量”。

图2:重新编码为不同变量

然后,如图3所示,将需要重新编码的“饮用牛奶类型”变量添加到右侧输出变量方框中,并在名称输入框中为其命名为“饮用牛奶类型编码”。

接着,单击“旧值和新值”按钮,匹配旧值与新值。

图3:设置输出变量

如图4所示,在旧值与新值匹配面板中,分别将饮用牛奶A、饮用牛奶B与数值1、2相匹配。

图4:匹配旧值与新值

完成变量的重新编码后,返回数据集,如图5所示,数据中出现了新的变量—饮用牛奶类型编码。

图5:完成变量的重新编码

为了让重新编码后的变量值含义更加明确,如图6所示,我们可以打开变量视图,编辑变量的值标签。

图6:编辑变量的值标签

如图7所示,在值标签设置面板,分别将值1、2标签为饮用牛奶A、饮用牛奶B。


图7:设定标签

如图8所示,返回变量视图,可以看到,值标签已经编辑完成。

图8:完成标签设定

三、应用独立样本检验

完成数据的处理后,就可以打开IBM SPSS Statistics的独立样本T检验功能(分析-比较平均值-独立样本T检验),正式开启数据的检验。

图9:独立样本检验功能

本文中,我们重点讲解了IBM SPSS Statistics独立样本T检验的检验原理、数据要求以及数据转换的方法。下一节,将会通过实际的数据演示该功能的操作。如需获取下一节内容,欢迎访问IBM SPSS Statistics中文网站。

作者:泽洋

标签:IBM SPSS Statistics数据转换

读者也访问过这里:
SPSS Statistics
一款功能强大的数据统计分析工具
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
如何用SPSS计算个人BMI值?
BMI即体重指数,是衡量个人身体质量的一个重要参数,通过判断BMI的数值大小,我们可以判断个人身高与体重是否协调。下面我将用IBM SPSS Statistics来为大家介绍BMI的计算方法。
2021-03-19
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
SPSS进行变量赋值的相关操作
变量和个案是IBM SPSS数据界面很重要的两个部分,可以形象理解为地球仪上的经线和纬线。通俗一点讲数据界面的每一列是一种变量,如年龄性别等。一行中的所有变量又构成了一个个案,本篇文章着重讲解变量,个案就不做过多展开。在图1中有具体的标注,可以看一下变量和个案到底是什么样。
2021-02-23
使用SPSS进行回归分析的方法总结
IBM SPSS Statistics 是强大的统计软件平台,SPSS全称Statistical Product and Service Solutions(统计产品与服务解决方案), SPSS可以帮助我们分析并更好地了解数据,以解决复杂的业务和研究问题。如今,SPSS已经被广泛运用于数据分析等各个领域。
2021-03-09
如何使用SPSS检验数据是否服从正态分布—偏度峰度系数
在《如何使用SPSS检验数据是否服从正态分布—KS检验与Q-Q图》一文中,我们了解了如何使用KS检验、Q-Q图来验证数据的正态性。接下来,本文将会继续讲解如何使用IBM SPSS Statistics的描述统计(偏度峰度系数)、探索统计检验(正态检验)数据的正态性。
2021-01-07