IBM Business Partner

IBM SPSS Statistics 中文网站 > 使用技巧 > 通过SPSS独立样本T检验,分析两组个案的差异(下)

通过SPSS独立样本T检验,分析两组个案的差异(下)

发布时间:2020/12/11

上一节,我们重点讲解了IBM SPSS Statistics独立样本T检验的检验原理、数据要求以及数据转换的方法。这部分的内容相当重要,建议先理解了上一节内容再学习本节的实例操作。

如图1所示,可以看到,独立样本T检验仅包含了检验变量,因此,需要使用个案组数据进行检验,而其分组变量是作为标识两组个案使用的。接下来,我们通过示例数据学习下操作。

图1:独立样本T检验

一、选择变量

首先,了解下设置面板中的变量概念:

1. 检验变量,即检验均值是否存在显著性差异的变量数值。

2. 分组变量,即用于标识两组个案的变量。

本例中,我们需要检验的是饮用牛奶A组与饮用牛奶B组的平均身高数据是否有差异。因此,需要将身高变量添加为检验变量,将饮用牛奶类型编码添加为分组变量。

然后,单击定义组按钮。

图2:选择变量

二、定义组

如图3所示,在定义组设置面板,需要设置个案组对应的编码数值,必须是数值型值。上一节中,我们已经将饮用牛奶类型变量重新编码为值1、2,因此,可以直接将其与组1、2匹配。

图3:定义组

三、选项设置

接着,打开“选项”按钮,设置检验分析的置信区间,一般情况下,设置为95%能确保较大的准确性。同时,设置“按具体分析排除个案”的缺失值处理方式。

图4:选项设置

四、分析结果解读

完成以上设置后,运行分析,如图5所示,数据中分别包含63个饮用牛奶A与63个饮用牛奶B的身高数据,从其平均值看到,饮用牛奶A组的身高均值高于饮用牛奶B组的身高均值,但其差异是否显著还要看显著性数据。

图5:描述统计数值

如图6所示,从独立样本检验图表的数据看到,显著性(双尾)的数值0.711大于0.05(95%置信区间下),不能拒绝原假设,也就是说,饮用牛奶A组的身高均值与饮用牛奶B组的身高均值无显著性差异。

图6:结果不显著

以上就是IBM SPSS Statistics独立样本T检验的应用介绍。该功能用于比较两组个案的均值差异,可用于验证两个对比个案组的均值数值是否有显著性差异,比如用于药物研究领域,验证两种药物有效性是否有差异等。

作者:泽洋

标签:SPSS独立样本T检验数据转换

读者也访问过这里:
SPSS Statistics
一款功能强大的数据统计分析工具
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
如何用SPSS计算个人BMI值?
BMI即体重指数,是衡量个人身体质量的一个重要参数,通过判断BMI的数值大小,我们可以判断个人身高与体重是否协调。下面我将用IBM SPSS Statistics来为大家介绍BMI的计算方法。
2021-03-19
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
SPSS进行变量赋值的相关操作
变量和个案是IBM SPSS数据界面很重要的两个部分,可以形象理解为地球仪上的经线和纬线。通俗一点讲数据界面的每一列是一种变量,如年龄性别等。一行中的所有变量又构成了一个个案,本篇文章着重讲解变量,个案就不做过多展开。在图1中有具体的标注,可以看一下变量和个案到底是什么样。
2021-02-23
如何使用SPSS检验数据是否服从正态分布—偏度峰度系数
在《如何使用SPSS检验数据是否服从正态分布—KS检验与Q-Q图》一文中,我们了解了如何使用KS检验、Q-Q图来验证数据的正态性。接下来,本文将会继续讲解如何使用IBM SPSS Statistics的描述统计(偏度峰度系数)、探索统计检验(正态检验)数据的正态性。
2021-01-07
SPSS数据合并之如何进行变量合并
在存在多个数据源的情况下,经常会使用到IBM SPSS Statistics的数据合并功能,对多个数据源的数据进行合并。
2020-11-13
使用SPSS进行回归分析的方法总结
IBM SPSS Statistics 是强大的统计软件平台,SPSS全称Statistical Product and Service Solutions(统计产品与服务解决方案), SPSS可以帮助我们分析并更好地了解数据,以解决复杂的业务和研究问题。如今,SPSS已经被广泛运用于数据分析等各个领域。
2021-03-09