IBM SPSS Statistics 中文网站 > 使用技巧 > 通过SPSS独立样本T检验,分析两组个案的差异(下)

通过SPSS独立样本T检验,分析两组个案的差异(下)

发布时间:2020/12/11 11:09:41

上一节,我们重点讲解了IBM SPSS Statistics独立样本T检验的检验原理、数据要求以及数据转换的方法。这部分的内容相当重要,建议先理解了上一节内容再学习本节的实例操作。

如图1所示,可以看到,独立样本T检验仅包含了检验变量,因此,需要使用个案组数据进行检验,而其分组变量是作为标识两组个案使用的。接下来,我们通过示例数据学习下操作。

图1:独立样本T检验

一、选择变量

首先,了解下设置面板中的变量概念:

1. 检验变量,即检验均值是否存在显著性差异的变量数值。

2. 分组变量,即用于标识两组个案的变量。

本例中,我们需要检验的是饮用牛奶A组与饮用牛奶B组的平均身高数据是否有差异。因此,需要将身高变量添加为检验变量,将饮用牛奶类型编码添加为分组变量。

然后,单击定义组按钮。

图2:选择变量

二、定义组

如图3所示,在定义组设置面板,需要设置个案组对应的编码数值,必须是数值型值。上一节中,我们已经将饮用牛奶类型变量重新编码为值1、2,因此,可以直接将其与组1、2匹配。

图3:定义组

三、选项设置

接着,打开“选项”按钮,设置检验分析的置信区间,一般情况下,设置为95%能确保较大的准确性。同时,设置“按具体分析排除个案”的缺失值处理方式。

图4:选项设置

四、分析结果解读

完成以上设置后,运行分析,如图5所示,数据中分别包含63个饮用牛奶A与63个饮用牛奶B的身高数据,从其平均值看到,饮用牛奶A组的身高均值高于饮用牛奶B组的身高均值,但其差异是否显著还要看显著性数据。

图5:描述统计数值

如图6所示,从独立样本检验图表的数据看到,显著性(双尾)的数值0.711大于0.05(95%置信区间下),不能拒绝原假设,也就是说,饮用牛奶A组的身高均值与饮用牛奶B组的身高均值无显著性差异。

图6:结果不显著

以上就是IBM SPSS Statistics独立样本T检验的应用介绍。该功能用于比较两组个案的均值差异,可用于验证两个对比个案组的均值数值是否有显著性差异,比如用于药物研究领域,验证两种药物有效性是否有差异等。

作者:泽洋

SPSS Statistics
云版首发!秒杀只需1分钱!
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
最新文章
1分钱秒杀!云版大数据统计与应用分析解决方案上线
在经历了数个月的悉心筹备后,云版大数据统计与应用分析解决方案终于要和大家见面了!为了让更多人能体验到本服务,我们特别发起了限量1分钱秒杀活动。
2022-11-24
spss缺失值分析步骤 spss缺失值分析结果怎么看
在数据调查过程中,工作人员常常会遇到数据缺失现象。数据缺失分为三类,随机缺失,完全随机缺失,非随机缺失。无论哪种缺失,都可能导致严重的问题,或者大大降低统计的精度。利用IBM SPSS Statistics可以对数据缺失值进行分析,关于SPSS缺失值分析步骤是怎样的,SPSS缺失值分析结果怎么看的问题?本文结合实例,为大家做简单介绍。
2022-11-24
spss标签值不显示 spss标签值乱码
使用IBM SPSS Statistics进行统计分析的过程中,为了工作便利,常常会为变量设置标签。在设置标签过程中,常常会遇到各种问题,如SPSS标签值不显示,SPSS标签值乱码等问题,这些问题产生的根源是什么?如何解决?本文向大家做简单介绍。
2022-11-21
IBM SPSS Statistics云版本登录使用教程
感谢您订阅IBM SPSS Statistics云版本服务,IBM SPSS Statistics云版本是由思杰马克丁+IBM+阿里云联合推出,帮助用户解决短时间使用正版软件的需求,提供周付费、月付费两种购买模式,性价比极高。那么在购买了IBM SPSS Statistics云版本之后,应该如何登陆使用呢,本篇教程就来告诉大家使用方法。
2022-11-23
spss中t值和p值是什么意思 spss中t值和p值的关系
在统计分析过程中,常常会遇到这样的情况:检验两个相关的样本是否来自具有相同均值的总体,就会用到t检验。t检验(Student's t test),主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布, t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。利用IBM SPSS Statistics统计分析软件进行t检验可以避免繁杂的统计学计算,快速给出结果,供用户分析。SPSS中t值和p值是什么意思,SPSS中t值和p值的关系是什么,本文结合实例,向大家做简单的介绍。
2022-11-16
spss pearson相关性分析步骤 spss pearson相关性分析结果怎么看
Pearson(皮尔逊)相关性指的是联合分布服从二维正态分布的随机变量X,Y之间的简单线性相关关系,X,Y之间的相关关系由简单相关系数r表示。利用IBM SPSS Statistics可以非常快速地完成两个随机变量X,Y间的Pearson(皮尔逊)相关性分析,SPSS Pearson相关性分析步骤是什么,SPSS Pearson相关性分析结果怎么看,本文结合实例,向大家做简单的介绍。
2022-11-14

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容:

咨询热线

在线咨询

限时折扣